
ROMEO: An Ontology-Based Multi-Agent Architecture

for Online Information Retrieval

Dmitri Soshnikov, Irina Krasteleva
Department of Numerical Mathematics and Programming,
Moscow Aviation Institute (State Technical University)

Moscow, Russia
dmitri@soshnikov.com, irina@krasteleva.com

Abstract

This paper describes an approach to path-finding in
the intelligent graphs, with vertices being intelligent
agents. A possible implementation of this approach
is described, based on logical inference in distributed
frame hierarchy. Presented approach can be used for
implementing distributed intelligent information sys-
tems that include automatic navigation and path gen-
eration in hypertext, which can be used, for example in
distance education, as well as for organizing intelligent
web catalogues with flexible ontology-based information
retrieval.

1. Introduction

One of the major problems in information technologies
nowadays is the growing amounts of information accu-
mulated in large weakly-structured repositories such as
the Internet. Thus a lot of research is going on in the
area of information retrieval and search, and in most
of the solutions some elements of artificial intelligence
are present.

Many efforts are related to more structured uni-
fied information presentation on the WWW. The most
perspective standard is Semantic Web [Semantic Web]
proposed by the W3C, which allows to formulate
ontology-based annotations for web resources and use
them in the intelligent search process to find relevant
information.

In SemanticWeb, as well as in many other projects,
the emphasis is done on providing static description of
resources, and applying some intelligent search algo-
rithm to find relevant ones. At present, static descrip-
tion methods are rather well-developed, while there
is still lack of efficient algorithms to handle large
amounts of distributed knowledge.

However, there is another approach focused on pro-
viding dynamic descriptions in the form of local knowl-

edgebases that contain dynamic knowledge in the form
of production rules, and can provide references to
recommended resources (including other knowledge-
bases to consult) upon request. Algorithms for log-
ical inference in the production knowledgebases are
well-known and tools already exist that can be used
to implement logical inference in distributed environ-
ments [Soshnikov 2002,Davison 1998]. Some attempts
to implement Internet search based on inference in dis-
tributed knowledgebase-like descriptions has already
been done [Sizikov 2002].

The main disadvantage of this approach is the
difficulty to implement a knowledgebase to describe
rapidly-changing internet resources in a given prob-
lem domain. To overcome this difficulty, it is sug-
gested to use predeveloped ontologies already contain-
ing universal dynamic knowledge in multiple problem
domains, and thus reduce the task of describing indi-
vidual resources to inheriting most of the knowledge
from certain ontologies. Two types of ontologies are in-
troduced: architectural ontologies that define different
types of nodes in intelligent knowledgebase graph (eg.,
redirector, catalog, wrapper, keyword-based search en-
gine, etc.), and domain ontologies.

Required resources are obtained in the process
of online traversal of the collection of distributed
knowledge-bases, that form a structure that we
would refer to as intelligent graph. In each vertex,
knowledge-base consultation occurs, with some ques-
tions possibly asked to the user. As a result of this
consultation problem state is changed (new facts, ei-
ther obtained from the user or derived, are added),
and resource queue is altered, i.e. new resources to
visit are suggested, which may be either resources of
direct interest to the user, or further knowledgebases
to consult.

Further on, we may impose some constraints on
the order in which resources are visited, i.e. require

Witold Abramowicz, Gary Klein (eds.), Business Information Systems, Proceedings of BIS 2003, Colorado Springs, USA



Business Information Systems — BIS 2003

that certain resources are visited prior to another ones.
This would allow us to obtain a path in the resource
collection that suits certain user needs. For example,
in such a way we may obtain a navigation path among
a series of related web resources, which turns out to be
extremely useful in such areas as distance education.

In this paper, we first introduce the concept of
intelligent graph and describe ad-hoc heuristic al-
gorithm that can be used to implement search in
such a graph. Then we describe an architecture of
ROMEO toolkit (Retrieval-Oriented Multiagent Envi-
ronment/Ontology) based on distributed frame hier-
archy, that can be used to implement presented ideas
of intelligent information retrieval. Finally, potential
applications of the presented approach are discussed.

2. Path-finding in Intelligent Graphs

2.1. Intelligent Graphs

In many practical situations it is convenient to deal
with graphs in which arcs are not statically defined,
but rather depend on some parameters. For exam-
ple, an intelligent web site catalog can present only a
subset of available hyperlinks to the user, depending
on his preferences, thus creating a dynamic hyperlink
graph. Further on, user preferences can be altered
during traversal of the hypertext graph, thus the set
of arcs presented to the user would be dynamically de-
termined in each vertex in the process of traversal. We
would reflect this idea in the following definition.

Definition 1. By State-dependent
dynamic graph we would mean
G = 〈{Xi}N

i=1, {〈uj, vj , pj〉}M
j=1〉, where {Xi}

— a set of vertices, uj, vj ∈ X = {Xi},
pj : S → {true, false} — set of arc activation
functions for each arc defined on some abstract set of
states S.

For each S ∈ S, a dynamic graph G(S) becomes
a normal directed graph G = 〈{Xi}, U〉, where U =
{〈uj, vj〉|pj(S) = true}.

We would consider state-dependent dynamic graphs
in terms of path finding, i.e. finding a certain finite se-
quence of vertices 〈X0, . . . , Xn〉 starting from a certain
point X0, where final vertex Xn satisfies some condi-
tion C(Xn). In practice we would also need to impose
some constraints on the required path, in the form of
order relation � defined on X, which would also de-
pend on the state S. We would also consider state
changes during the search process, i.e. while travers-
ing the graph some state change functions would be
applied corresponding to each vertex. This leads us to
the following definition:

Definition 2. A a state-dependent constrained
graph G = 〈{Xi, Ti}, 〈uj , vj , pj〉, �S〉, where Ti : S →

S — state transformation functions, �S — constraint
order relation dependant on the current state. We
also assume that S is a partially ordered set (or a lat-
tice), and that relations pj and �S are monotonous,
i.e. ∀ S1 
 S2 ∈ S it holds that

∀j pj(S1) ⊃ pj(S2) ∀u, v ∈ X (u �S1 v) ⊃ (u �S2 v)

and that Ti are monotonous in the traditional sense
(∀i ∀S ∈ S S 
 Ti(S)).

While performing search in such a graph, the path
would depend also on the starting state S0 ∈ S. Thus,
each path X0 → . . . → Xn also corresponds to a path
S0 
 S1 
 . . . 
 Sn in the set of states. To account
for this, we will make the following

Definition 3. A path 〈X0, S0〉 → . . . → 〈Xn, Sn〉 will
be called valid, if ∀i 〈Xi, Xi+1, pj〉 ∈ U and pj(Si) =
true (i.e. all arcs in the path are valid), and Xi 
Sn

Xj ⊃ (i ≤ j) (i.e. all final constraints are satisfied).
We may also require monotonicity, i.e. Si+1 
 Ti(Si),
and call it monotonously valid path.

In practive, when implementing search algorithms,
the validity relation is difficult to accomplish, since
vertices in a valid path have to satisfy all constraints,
even the ones which may appear only on a later stage.
However, we may consider a special kind of separable
constaint relation, where �Si+1=�Si ∪ �i, and �i⊆
{〈u, Xi〉, u ∈ X} (i.e. constraints are added in order of
vertice traversal, and on a latter stages constraints on
already traversed vertices are not introduced). In this
case the validity relation can be written in a weaker
form Xi 
Sj Xj ⊃ (i ≤ j).

One practical application of presented definitions is
in multi-agent systems oriented towards information
retrieval and hypertext navigation planning. Consider
a connected agent society, where each agent can rea-
son in some common terms, and knows about a certain
set of other agents that it can recommend for further
consultation. In this case agents form dynamic graph,
and finding a path satisfying certain constraints corre-
sponds to performing distributed consultation, in the
process of which required navigation path or desired
resource are found. State S in this case would corre-
spond to the common environment of all agents in the
society, and it would obey all monotonic requirements
if monotonic inference is used throughout the society.
For more strict mathematical modeling of such soci-
eties, S can be considered to be a set of state functions
W, as defined in [Soshnikov 2002].

2.2. Path-finding Algorithms

For searching state-based constrained graphs, two ap-
proaches can be applied. First, most of the classi-
cal path-finding algorithms can be used, adding re-
strictions to satisfy constraints. As an example, path

Witold Abramowicz, Gary Klein (eds.), Business Information Systems, Proceedings of BIS 2003, Colorado Springs, USA

141



ROMEO: An Ontology-Based Multi-Agent Architecture for Online Information Retrieval

Algorithm 1: Queue-based path-finding algorithm
for separable constrained dynamic graph.

Input: Separable constrained dynamic graph G =
〈{Xi, Ti}, U, �S〉, initial search state S0, initial point
X0, search criteria C.
Output: A set of all valid paths R =
{〈〈X0, S0〉, . . . , 〈Xn, Sn〉〉}
QueueSearch(G,X0,S0)
R ← ∅

Q ← {〈X0, S0〉}
while Q �= ∅ do

select P ∈ Q (first, last, best, etc.)
Q ← Q \ {P}
〈Xl, Sl〉 ← last(P )
if Xl satisfies C then

R ← R ∪ {P}
continue

S ← {〈x, Tx(Sl)〉|〈Xl, x, p〉 ∈ U, p(s) = true}
foreach 〈x, s〉 ∈ S

if [P |〈x, s〉] satisfies �s (or �x) then
Q ← Q ∪ {[P |〈x, s〉]}

queue keeping algorithm (which corresponds to either
of depth-first, breadth-first of best-first search) mod-
ified for constraint satisfaction is presented in Algo-
rithm 1.

Alternatively, constraints can be used not only to
filter out invalid paths during the search process, but
rather to select the search direction during path ex-
tension. For example, if, during the search process,
we move from Xk to a certain vertex Xi, and con-
straints indicate that Xj1 and Xj2 has to be visited
prior to Xi, then we proceed to Xj1 instead, placing
Xj2 and Xi into the queue. In this example, however,
a path from Xk to Xj1 may not exist — which should
cause backtracking in the search algorithm. In prac-
tice, however, constraints indicate that corresponding
vertex ”knows” of the preceding one, and thus a path
between them also exists, i.e.

Xi �S Xj ⊃ 〈Xi, Xj , pj〉 ∈ U ∧ pj(s) = true (1)

Those considerations lead us to a family of ad hoc
heuristic path finding algorithms, where we are mostly
concerned with constraint satisfaction and final search
condition, rather than with the validity of path. Those
algorithms would, however, give the valid path, given
conditions (1) on the functions pj and constraints. An
example of such an algorithm is provided as Algorithm
2.

3. ROMEO: A Toolkit for Intelligent
Search

3.1. Principles of Intelligent Search in Dy-
namic Resource Descriptions

Formalism presented above can be used to describe
the following situation. Suppose there is a number of

Algorithm 2: Ad hoc heuristic path finding algo-
rithm.

Input: Separable constrained dynamic graph G =
〈{Xi, Ti}, U, �S〉, initial search state S0, initial point
X0, search criteria C.
Output: A path P = 〈〈X0, S0〉, . . . , 〈Xn, Sn〉〉
HeurSearch(G,X0,S0)
P ← 〈〈X0, S0〉〉
Q ← ∅

R ← ∅

while last(P ) does not satisfy C do
〈xl, sl〉 ← last(P )
if Q �= ∅ then

select x ∈ Q
Q ← Q \ {x}

else if {ξ|〈xl, ξ, p〉 ∈ U, p(sl) = true} �= ∅

S ← {ξ|〈xl, ξ, p〉 ∈ U, p(sl) = true}
select x ∈ S
R ← R ∪ (S \ {x})

else if R �= ∅

select x ∈ R
R ← R \ {x}

else
break

s ← Tx(sl)
Ω = {ξ|ξ �s x}
if Ω = ∅ then

P = [P |〈x, s〉]
else

Q = Q ∪ Ω ∪ {x}

resources, and we want to provide an automatic way
for the user to select desired resource or path within
those resources based on some preferences. This can
be accomplished by associating with each resource a
dynamic knowledgebase, that can determine whether
resource is applicable to user preferences, and also rec-
ommend which resources should also be visited, either
as a prerequisite, or as a relevant information source.

In this case, the resources would form a constrained
state-based graph, where the state corresponds to the
common working memory (or a blackboard) used by
all individual expert systems. User preferences would
determine the initial state S0, and the initial point of
search X0 would be some well-known resource (search
engine). In the search process resource graph would
be traversed, and knowledgebase consultation per-
formed at each node, resulting in enriching state by
newly derived facts (which corresponds to applying
monotonous function Tx(·)).

During the consultation, some further questions
may also be asked to the user to make decisions more
precise. In this case, user answers are also stored in
the state.

Constraints will be used to ensure that resources
are traversed in the ”correct” order, i.e. certain con-
sultations are applied before other ones. As a result,
either resources that satisfy user preferences, or a path

Witold Abramowicz, Gary Klein (eds.), Business Information Systems, Proceedings of BIS 2003, Colorado Springs, USA

142



Business Information Systems — BIS 2003

Figure 1: Architecture of the ROMEO toolkit

in the resource graph can be obtained.
In order to ensure standardization and compati-

bility between knowledgebases describing different re-
sources, they have to be formulated and reason about
some common terms, that are defined by ontologies.
In particular, two types of ontologies are involved: ar-
chitecture ontology, that defines basic structures for
describing resources, as well as templates for different
types of resources such as catalog, forwarder, search
engine wrapper, etc., and domain ontologies, that
provide some domain-specific knowledge (eg., ontol-
ogy for entertainment sites, which may contain speci-
fications of different types of entertainment sites, tem-
plates for typical user preferences, statistical informa-
tion for different age groups, etc.).

For implementation, it is also convenient to use
such architecture where it is possible to define dynamic
knowledge as part of the ontology, and use this domain
knowledge directly in the reasoning process of each ex-
pert system. An architecture of distributed frame hier-
archy described in [Soshnikov 2002] is very well-suited
for this purpose, as it uses uniform knowledge rep-
resentation throughout the whole system, which can
directly be used in the process of distributed logical
inference by a series of knowledgebases located on dif-
ferent network nodes. Furthermore, two modes of in-
teroperability for distributed operation (remote invo-
cation and inclusion) allow to use the system on differ-
ent types of sites (both on active and passive servers),
either via CORBA, RMI or simple HTTP protocols,
in different configurations (with central or distributed
inference), etc.

3.2. Toolkit Architecture

The overall architecture of the toolkit based on the
described principles is shown on Fig.1.

The basis of the architecture is JULIA toolkit [Sosh-
nikov 2002] that provides basic functionality for im-
plementing reasoning in distributed frame hierarchy,
which is enhanced by adding specific libraries for ar-
bitrary data exchange between nodes and for access-

ing other HTTP-based resources, such as traditional
search engines. On top of it, there are ROMEO core
API and utilities, which implement the following func-
tionality:

• User interface, either in the form of stand-alone
application, UI agent, web interface or e-mail
gateway.

• Parsers that convert XML or RDF/XML-based
descriptions and knowledgebases into JULIA in-
ternal format.

• Agents that run on each node in the resource
graph and perform resource description parsing
and logical inference as required.

Important part of ROMEO toolkit are architectural
and domain-specific ontologies, formulated in one of
the supported ontology-description languages.

Relation of resource graph and different ontologies
is demonstrated on Fig.2. Here two levels of onto-
logical descriptions are shown: upper ontologies, and
resource descriptions, which actually form the resource
graph. Actual descriptions are also formulated in on-
tology description language, and are in fact a collec-
tion of frames inherited from some concepts in upper-
level ontologies, or (possibly) from other resource de-
scriptions. Typically, each resource description should
directly or indirectly inherit its resource type from
architectural ontology, and some domain knowledge
from domain ontology. If we are describing typical re-
source, domain ontology should provide enough knowl-
edge, and thus actual description would be as simple
as static description.

In accordance to JULIA architecture of distributed
frame hierarchy, there could be two ways of interop-
erability between nodes in resource graph and ontol-
ogy descriptions: invocation or inclusion. With in-
vocation, whenever a reference to a remote resource
or ontology is made, a remote call is executed, and
logical inference is transferred to another node. This
require another node to be active, i.e. be able to
serve as logical inference server and accept requests us-
ing some remote invocation protocol (CORBA, RMI,
etc.). On the contrary, inclusion can function on any
HTTP-capable server, and is basically provides re-
quired knowledge in some internal form, allowing to
download parts of ontology hierarchy, instantiate it
locally and use for logical inference. Two forms of
interoperability provide almost identical functionality,
and can also be combined to create complex interop-
erability schemes. For example, end resources can be
described by passive descriptions that are located on
HTTP server alongside with HTML pages, while some
central server can be used to collect information from
those resources, reason about it, and return links to

Witold Abramowicz, Gary Klein (eds.), Business Information Systems, Proceedings of BIS 2003, Colorado Springs, USA

143



ROMEO: An Ontology-Based Multi-Agent Architecture for Online Information Retrieval

Figure 2: Ontologies and resource graph

Figure 3: Architecture ontology
the user that is using thin client with limited reason-
ing capabilities (for example, a cell phone).

In principle, the same basic architecture can be im-
plemented on any other platform that support reason-
ing in distributed knowledge repositories, for example
on LogicWeb [Davison 1998]. JULIA toolkit, however,
has an advantage of easy integration with procedural
code written in Java, which makes it easier to expose
certain parts or ROMEO core API as frames and part
of ontology.

3.3. Ontology structure

Architecture ontology defines the basic structure of re-
source description node, and different types of nodes
according to their general function. The following
types of nodes can be identified:

WebSite A simple node describing one WWW re-
source. Such description is represented as a frame
with specific slot that defines suitability of the re-
source to the user. Individual resource descrip-

tions inherit from this graph and can redefine the
suitability slot according to their content. Also,
different sub-frames are already defined in the on-
tology, that evaluate suitability either according
to keyword set, by domain ontology rules, etc.
With those more specific concepts individual re-
source descriptions can be as simple as static de-
scriptions, with all logic inherited from ontology.

Catalog A node that contains references to other
nodes and can recommend certain resources based
on user preferences. Again, different pre-defined
types of catalogs exist, some of them also being a
wrappers around existing Internet catalogs such
as Yahoo.

ReasonongCatalog A ROMEO resource that con-
tains knowledge base with intelligent references
to other resources. We can distinguish between
domain catalogs (that ”know” of resources in cer-
tain problem domain), or more general catalogs,
that resemble traditional categorial portals.

Wrapper A node that uses traditional search en-
gine (SearchEngineWrapper) or catalog (Catalog-
Wrapper) to retrieve web sites and present them
as some form of resource descriptions. Each wrap-
per is unique for each search engine: GoogleWrap-
per, TeomaWrapper etc.

Retriever/Spider A node that collects information
on other ROMEO resources by either crawling
the web, using traditional search engines, or some
peer-to-peer technique (for example, collecting all
resources from the retrieval queue passed through
it).

Domain ontologies provide knowledge specific to
problem domains. For example, there could be an
ontology developed to describe entertainment sites,
which would provide classification of different types
of entertainment resources, rules describing suitabil-
ity of entertainment types to age groups, etc. Then,
a certain entertainment site may be described by just
inheriting its description from concept corresponding
to a specific type of entertainment, and an entertain-
ment catalog would use this description as well as rules
from upper ontology to find this resource to be suit-
able to specified age group. Specification of age groups
should also be standardized throughout all descrip-
tions by making it a part of upper domain ontology
for commonsense knowledge.

4. Applications

4.1. Search in the Internet

Presented architecture can be used for finding re-
sources given certain flexible set of preferences or in the

Witold Abramowicz, Gary Klein (eds.), Business Information Systems, Proceedings of BIS 2003, Colorado Springs, USA

144



Business Information Systems — BIS 2003

process of user consultation. The problem, however, is
in producing resource descriptions for rapidly changing
hypertext structure, such as the Internet. This can be
reduced by providing a set of domain ontologies, but
this in itself is a very complex task. Also, it is very
difficult to impose a new standard on such heteroge-
neous structure, and Semantic Web standards provide
just one level of standardization in terms of description
language and its semantics.

This, we envision the following possible uses of the
presented approach on a smaller scale within the In-
ternet:

• Annotating one corporate web site / set of re-
lated sites in order to advise user to visit only
certain parts of it. For example, a site of non-
governmental organization can ask user questions
and recommend a series of grant programs he can
apply for.

• Combining existing search resources together. Us-
ing wrappers for catalogs and keyword search en-
gines we can combine different search facilities
to find related pages, even un-annotated. Tra-
ditional search techniques here can be used both
after reasoning (eg. a set of keywords is auto-
generated based on user answers, and then sub-
mitted to search engine), before it (initial set of
resources is found, and then further processed by
expert system) or in any intermediate way.

It has to be noted, however, that if a certain set
of ontologies becomes a de facto or W3C standard, it
would be much easier to adopt ontology-based search
technologies on a wider scale. There are already some
attempts to achieve this standardization [Upper On-
tology].

4.2. Distance Learning Systems

In modern distance learning systems, one of the prob-
lems is automatic course planning based on user’s pref-
erences [Panteleev 2002]. Such system, after a consul-
tation with the user or preliminary examination would
select a set of materials that has to be studied by the
user, and present him with a course plan satisfying his
needs in an optimal way. This problem is essentially
the same as finding an optimal path in a constrained
graph.

To implement such system in the presented frame-
work a domain ontology has to be constructed, and
all individual course topics have to be described using
dynamic descriptions with constraints. A course plan
can then be constructed by the process of distributed
inference in the set of resources. Initial state required
for this construction can be obtained by questioning

the user, possibly including adaptive knowledgebase-
driven testing [Malkina 2001].

It has to be noted that a course can be con-
structed from individual topics that belong to different
providers, given that they are described using the same
domain ontology. Thus, an issue of standardization is
very important topic here, and there are already stan-
dards being developed [Panteleev 2002]. However, the
ontological approach used in all cases is the same, and
thus when certain de facto standards become domi-
nant, it should be possible to adopt proposed technol-
ogy to use the corresponding ontology.

4.3. Applied Online Intelligent Systems

As an example of using proposed approach for business
automation, consider intelligent job search catalog for
recruiting agencies. Intelligent recruiting catalog al-
lows companies (employers) to search through the sites
of remote recruiting agencies. In this example cata-
log of recruiting agencies contains knowledge base to
define properties of recruiting agencies and some gen-
eral knowledge about job seekers profiles. All agencies
have local knowledge bases to define specific job seek-
ers properties and generate the result list of resumes.
In the intelligent selection process, agencies also refer-
ence some domain ontologies according to the job in
question.

The original idea of the intelligent catalogs to have
one primary knowledge base with the general informa-
tion about the problem area and a set of local knowl-
edge bases for each registered web site. Local knowl-
edge base is used to define specific knowledge for a
particular web resource. Predefined top-level ontology
is located on the catalog primary resource is available
to all parties via inclusion (see Fig.4), for both direct
use in reasoning or for introspection. At the same time
local knowledge bases may extend the frame structure
in order to provide more detailed knowledge. In the
architecture ontology (see Fig.3) intelligent recruiting
catalog represents a ReasoningCatalog; job agencies
web sites are of ReasoningSite type.

Inference starts on the catalog server. Catalog and
web sites contain dynamic knowledge in the form of
production rules, used by JULIA inference engine run-
ning on the catalog site. First step is to define the list
of agencies that will take part in distributed inference
process [Soshnikov 2002]. An employer will be ques-
tioned to define a desired job seeker profile as well as
to generate this agencies list, which will help define
the initial list of agencies to consult further:

ASK agency.location ’Choose the agency location’

[’Ottawa’,’Toronto’, ... ’Select All’];

ASK job seeker.profile ’Choose a job seeker profile’

[’sales’,’management’, ... ’administration’];

Witold Abramowicz, Gary Klein (eds.), Business Information Systems, Proceedings of BIS 2003, Colorado Springs, USA

145



ROMEO: An Ontology-Based Multi-Agent Architecture for Online Information Retrieval

Figure 4: Domain ontology for recruiting portal
When the type of the job is defined, the system

looks for all suitable agencies in the specified sec-
tor. Since all the government agencies inherit from
the GovernmentAgencies concept, references to them
are automatically made available in ALL_DESCENDANTS
slot.

SET suitable_agencies = FILTER{ %.is_suitable :

GovernmentAgencies.ALL_DESCENDANTS};
The next step is the remote inference using local

knowledge bases. The employer will be questioned
some specific related questions with the job agency
and this particular candidate. A job seeker would basi-
cally specify his parameters and the actual frame type,
choosing from a range of frames provided by domain
ontology.

Frame John parent sales manager {
Name = ’John Doe’,

Age = 35, Marital Status = ’single’, ... }

FrameSet Cand Sales parent sales manager

SQLRequest SELECT * From Candidates

Where type=’Sales Manager’;

SET job seeker.is_suitable = job seeker.salary_ok

AND job seeker.qualifications ok AND ...

SET job seeker.salary ok =

salary offered > job seeker.min salary;

The questions will be generated by remote knowl-
edge bases and used by the inference engine on the
catalog server. All questions would be presented to
the used doing the search through the corresponding
interface of Java- or Web-application. As the final re-
sult the employer will get the list of references to user
profiles that match specified criteria.

5. Conclusions

In this paper, an architecture for multi-agent search
system based on ontological descriptions has been pre-
sented. Unlike many search systems, it features online

search strategy, i.e. based on user’s preferences formu-
lated either explicitly or in the form of question-answer
dialogue, a set of dynamically-allocated resources is
traversed, to find those related to user’s needs. While
this architecture is not well-suited for traditional Inter-
net search on the wide scale because it imposes differ-
ent standards on resource annotation, it can be used
in different projects related to navigation path find-
ing in the set of predefined resources. One example of
such approach can be distance learning systems, and
sites with intelligent navigation. However, with fur-
ther development of standard ontologies and descrip-
tion methods, the idea of resource annotation by dy-
namic knowledgebases can possibly be used for more
ambitious tasks.

References

[Semantic Web] Semantic Web at World Wide Web
Consortium: http://www.w3.org/2001/sw/

[Upper Ontology] Standard Upper Ontology Study
Group: http://suo.ieee.org

[Soshnikov 2002] D. Soshnikov An Architecture of
Distributed Frame Hierarchy for Knowledge Shar-
ing and Reuse in Computer Networks. In Proc.
of 2002 IEEE Int. Conf. on Artificial Intelligence
Systems, IEEE Computer Society Press, 2002. pp.
115-119.

[Sizikov 2002] E. Sizikov, D. Soshnikov Using Dy-
namic Ontologies based on Production-Frame
Knowledge Representation for Intelligent Web Re-
trieval. In Proc. of the 4th Int. Workshop on Com-
puter Science and Information Technologies, Pa-
tras, Greece, 2002.

[Davison 1998] A. Davison and S.W. Loke LogicWeb:
Enhancing the Web with Logic Programming,
Journal of Logic Programming, Vol. 36(3), Septem-
ber 1998, pp.195-240.

[Panteleev 2002] M.G. Panteleev, D.V. Puzankov, et
al. Intelligent Educational Environments Based on
the Semantic Web Technologies. In Proc. of the
2002 IEEE Int. Conf. on Artificial Intelligence
Systems, IEEE Computer Society Press, 2002. pp.
457–462.

[Malkina 2001] O.I. Malkina, D.V. Soshnikov Creat-
ing Adaptive Testing Systems on the Internet
using Artificial Intelligence Technologies. In Sel.
Abstracts of 9th Int. Student Conf. on New In-
formation Technologies, MGIEM Publising, 2001.
pp.390-392. (In Russian)

Witold Abramowicz, Gary Klein (eds.), Business Information Systems, Proceedings of BIS 2003, Colorado Springs, USA

146


