
Technologies for Building Intelligent Web Applications

based on JULIA Toolkit

Dmitri Soshnikov
Department of Computational Mathematics and Programming,

Moscow Aviation Institute (Technical University)
Moscow, Russia

dmitri@soshnikov.com

Abstract

The paper outlines different approaches for
building intelligent web applications, i.e. web
applications that use some sort of logical rea-
soning. In particular, the use of JULIA
toolkit, based on frame knowledge represen-
tation with forward- and backward-chaining
production rules is considered. In the first
part, some simple technologies for remote con-
sultation are presented, measures for increas-
ing reasoning performance over slow network
connections are discussed, such as rules-on-
demand loading, and several real-world ap-
plications are outlined. Finally, the complex
technology, which we call Intelligent Active
Server Pages (IASP) is presented, in which
web application is viewed as a collection of
interoperating intelligent web pages that con-
tain knowledge in the form of frame sub-
hierarchies, which can interoperate through
standard HTTP protocol with other web
pages, either intelligent or normal dynamic
pages constructed using traditional tools like
ASP or PHP. Together with other features of
JULIA Toolkit, such as seamless integration

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the CSIT copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Institute for Contempo-
rary Education JMSUICE. To copy otherwise, or to republish,
requires a fee and/or special permission from the JMSUICE.

Proceedings of the 3rd International Workshop on
Computer Science and Information Technologies
CSIT’2001
Ufa, Yangantau, Russia, 2001

of data from relational databases into rea-
soning process, ability to use passive know-
ledge repositories, integration of traditional
objects including COM- and CORBA-objects
give such a paradigm for constructing intelli-
gent web applications the unsurpassed flexi-
bility and power in designing small and large-
scale sites and distributed intelligent applica-
tions.

1 Introduction

The growing popularity of Internet today is dominated
by web applications — interactive web sites, that
exhibit the functionality generally available in nor-
mal software applications: accessing large databases
(search and retrieval), entering data from different lo-
cations (applications for distributed data collection),
automating groupware tasks and workflow (intranet
applications) and so on. Moreover, some areas for web
applications emerge which do not have equivalents in
the software part, a good examples being community
and e-commerce web sites.

The majority of web applications is created using
classical imperative programming techniques, and tra-
ditional programming languages, the most popular be-
ing Visual Basic (VBScript, used in Microsoft Active
Server Pages technology), Perl, PHP and JScript (Mi-
crosoft Server-side version of JavaScript). Most of the
languages used are typical procedural languages, and
are not even fully object-oriented. Since web applica-
tions generally use database backends, those languages
have some sort of database access API, and the ability
to add and use additional third-party modules (in the
form of DLLs and COM objects on Windows platform,
or some sort of object-oriented extensions like CPAN
Modules in Perl) that extend the core functionality of
the language.

Workshop on Computer Science and Information Technologies CSIT’2001, Ufa, Yangantau, Russia, 2001 1

One way of enhancing the functionality of web ap-
plications is to use alternative programming paradigm,
like functional, logic or true object-oriented program-
ming. For example, in LogicWeb [1], logic program-
ming and the extension to Prolog is used for adding
complex behaviours to the World Wide Web. More
straightforward example of using logic programming
to construct web application can be found in AMZI
Prolog [6] and related projects.

Another system called Zope [2] utilizes object-
oriented approach to the WWW, where each web page
is viewed as an object, and the whole site therefore
consists of interoperating objects, which can be either
written in Python or other programming language and
added as a module, or constructed from other objects
using proprietary DTML language (which is essentially
an HTML extension) and loaded from the persistent
Z Object Database.

This paper presents another approach to building
web applications using frame-based knowledge repre-
sentation and production rules. As it was discussed in
[4], frame-based representation allows to integrate into
one frame hierarchy standard frames with forward-
and backward-chaining production rules, database
extensionals and system frames for accessing rela-
tional database tables seamlessly during the infer-
ence process, and objects from object-oriented lan-
guages (including CORBA- and COM-objects) with
imperative algorithmic functionality. Thus, discussed
frame-based model successfully integrates different
programming, reasoning and knowledge representation
paradigms. It also presents the basis for creating dis-
tributed reasoning systems, where parts of the frame
hierarchy are located on different network hosts.

Presented approach considers web application as
a collection of interoperating intelligent web pages
that contain knowledge in the form of frame sub-
hierarchies, which can interoperate through standard
HTTP protocol with other web pages, either intelli-
gent or normal dynamic pages constructed using tra-
ditional tools like ASP or PHP. Since the implementa-
tion is based on the JULIA toolkit, it allows seamless
integration with relational databases and CORBA ob-
jects, as well as using remote knowledge repositories
and other features described in [4].

However, practical implementation of the presented
approach requires special software to be installed on
the web server. Also, using such powerful tool for sim-
ple applications would not be appropriate. Therefore,
we begin by describing more simple and traditional
approaches to remote consultations and their practical
applications, moving towards more general approach.
Also, we discuss some additional measures for opti-
mising the performance of reasoning applications over
slow network connections.

2 Overview of JULIA Toolkit

When implementing any kind of knowledge-based ap-
plications, the developer is faced with the options of
building custom inference engine with some domain-
specific knowledge representation, or using existing
tool with suitable knowledge representation and in-
ference capability. Among different tools for bulding
knowledge-based systems (an overview of many mo-
dern tools can be found in [5]), only some can be in-
tegrated as a reasoning module into larger software
systems with different user interface, the most notable
being AMZI Prolog [6], CLIPS [7], and Jess [8].

The most open system in the mentioned list is Jess,
a subset of very popular CLIPS system, which uses
the same language, and is implemented as a set of
Java classes, available in source code. Jess supports
Rete algorithm for implementing forward-chaining in-
ference, and the ability to extend the functionality of
the system with additional functions written in Java.
For remote consultations over the Internet it can be
used on the client side as an applet (although the size
of the code has lately grown too large to be comfort-
ably used in this manner), or from the server-side using
Servlet or any other similar technology.

However, Jess supports only limited object-oriented
features (object-oriented features found in CLIPS are
omitted), does not provide effective support for back-
wards chaining1, and apart from the ability to be ex-
tended by arbitrary Java functions it does not pro-
vide out-of-the-box integration with other systems,
like relational databases or distributed objects. More-
over, the nature of Rete algorithm and CLIPS-like lan-
guage makes it difficut to adopt distributed inference
paradigm to this architecture.

To overcome those difficulties, a system called JU-
LIA (Java Universal Library for Intelligent Applica-
tions) has been developed, which is based on the prin-
ciples presented in [4]. JULIA is essentially a set of
Java classes that give the user an open API which
can be used by any Java application (and also by
non-Java applications through simplified interfaces ex-
poused by CORBA). Frame paradigm with production
rules for representing dynamic knowledge, on which
the whole system is based, provides natural integration
with arbitrary Java objects and JavaBeans, relational
databases accessible over JDBC, distributed CORBA-
and COM-objects. Built-in functionality can also be
extended by writing custom functions in Java, and pro-
viding arbitrary rule selection strategies to customise
the inference process to best suite the needs of the

1In the latest versions support for backward chaining is an-
nounced, although it is merely an attempt to provide some lan-
guage support for simulating backward-chaining inference on
forward-chaining system

2 Technologies for Building Intelligent Web Applications based on JULIA Toolkit

problem domain.
Original knowledge is formulated by using specific

knoledge representation language. Source file con-
taining frame definitions and production rules is then
translated into a number of frames, which form what
we call a frame world. Frame world can be serialized
at any time and stored in a self-contained file, which
then can be loaded with one command for performing
logical inference.

The basic units of knowledge representation are
frames, which can be of different types: standard
frame (DefFrame) that is responsible for inference
and most of other system functionality, Java Class
Frame (JavaClassFrame) for representing external
Java classes as frames in the frame model and other
frames for accessing components such as JavaBeans
and COM-objects, frames and frame extensionals for
database access (DBFrame and DBFrameClass), remote
frames for accessing remote instances of JULIA worlds
over different protocols (CORBA, XML-RPC, RMI).
Custom frame types can be introduces by extending
Frame or StoreFrame base classes depending on the
functionality needed2.

All frames follow the same interface, which spe-
cifies operations for accessing values of frame slots.
Most of the system functionality is exhibited by stan-
dard frames, which contain actions assigned to their
slots. All production rules in the source file are trans-
lated into either OnGetActions, which are executed
when the value of the slot is to be determined, or
OnSetActions, which are fired when the value is as-
signed to the slot. Backward-chaining rules (which
contain only one concluding assignment) are directly
translated into OnGetActions for the corresponding
slot, while forward-chaining rule is translated into an
instance of OnSetAction, which is referenced from all
slots in its premises, thus organizing the form of sim-
plified Rete network. All actions are also pre-processed
in such a way that they can be invoked from the frames
inherited from the one they belong to, so that they can
be applied during inference for all frames descending
from the one the rules have been defined for. Also, the
order in which actions are performed is controlled by
an instance of RuleSelectionStrategy class, there-
fore allowing very flexible3 control of the conflict re-
solution strategies both during forward and backward
chaining. In addition to actions, slots and standard
frames can also contain constraints (facet constraints,

2Frame class exhibits only operations for accessing and assign-
ing the value of slots, while StoreFrame adds the functionality
of storing the values in memory, while still allowing to obtain
them from any other source

3In addition to a set of standard selection strategies (first
rule fires first, random selection strategy, limiting the number
of firing rules, combining different selection strategies), custom
rule selection strategies can be developed in Java

as well as constraints in the form of arbitrary ex-
pressions), which prevent certain valies from being as-
signed to slots thus causing backtracking.

While frame world is a collection of frames stored
in one serialized file, it can also reference frames in
another frame world, i.e., located on another JULIA-
based server, or running on the same maching in an-
other thread. Functionality of inter-operating frame
worlds resembles blackboard architecture[13], but
in a way it is more powerful, because rules defined in
one frame world can propagate into another when a
frame is inherited from another frame located in dif-
ferent frame worlds. However, in all cases only val-
ues of slots are being exchanged, and not the actual
rules. Such complex inter-operation of frame worlds
is achieved by creating proxy frames, which forward
requests via one of the supported protocols.

Other JULIA objects, such as individual frames
with attached actions, or even individual actions can
also be serialized (or alternatively represented in open
XML form) and then loaded into base frame world
on-demand, or using special functions.

3 Using the Toolkit for Remote Con-
sultations

The simplest form of knowledge sharing in computer
networks is remote consultation, in which the know-
ledge located on one computer is used by another net-
work node to solve the problem. There are two ma-
jor types of remote consultations depending on where
the inference process takes place: server-side inference
(thin client model), and client-side inference (thick
client model). Different aspects of implementing in-
ference on the server and on the client side have been
discussed in [3]. Here we will outline the aspects of
technical implementation using JULIA toolkit.

3.1 Remote consultation with server-side in-
ference

The most interesting case is when some questions are
asked to the user during the inference process (which is
typical when backward chaining is used). The problem
of implementing server-side remote consultation in this
case lies in the fact that such inference process cannot
be separated into request-response series typical for
web applications. This is because HTTP protocol is
stateless, thus making it difficult to store the state of
the system, which has quite complicated nature, dur-
ing the inference process. Also, the architecture of the
JULIA toolkit is such that question-asking routine is
always called as a callback procedure, i.e. the execu-
tion of the library cannot be stopped in between re-
quest and response, which is the way most of the web

Workshop on Computer Science and Information Technologies CSIT’2001, Ufa, Yangantau, Russia, 2001 3

Figure 1: Server-side inference
server-side technologies operate, including CGI, ASP,
and others.

The proposed solution to this problem is to start
the inference process for each new user session concur-
rently in a separate process or thread, and have indi-
vidual processes servicing user requests communicate
with the inference process (see Fig.1). Java Servlet
technology is ideal for implementing such mechanism,
because it natively supports threads, and the lifetime
of the servlet code corresponds to the web server run-
ning time, thus some code can continue executing in
between requests.

When web server is started, servlet initialization
code is executed, which creates empty session table
and loads the corresponding JULIA frame world from
the external serialized file. When new request is en-
countered, the servlet creates a new instance of Frame
world by incomplete clone operation4, records the re-
ference to the created world in the session table, and
starts inference. As soon as the question to be asked
to the user is encountered during the inference, the
inference process is suspended, and the qustion text
is returned to the user5. When the user answers the
question, and the answer is sent to the server in subse-
quent request from the same session, the value of the
answer is returned to the inference thread, which con-
tinues execution until another question is encountered,
or the result is obtained.

Each arriving requiest has the associated session
identifier, which is used to match the request with the
reference to the running thread of inference process
using the session table. Thus, one servlet can service
requests from multiple users simultaneously, and the
actual inference processes for each request run con-
currently in separate threads. When the session is
abandoned by the user (which happens, for example,
when Internet connection is dropped), it is destroyed
after a certain timeout period by servlet control pro-

4New instance of frame world should have different set of slot
values, but the same actions, therefore some references in two
worlds can point to the same object instances in memory.

5To have the consistent and rich web design, specified HTML
template is applied to the question text, and the resulting
HTML code is returned. Alternatively, servlet can be used
through SSI, in which case the HTML design is encapsulated
into the calling page, and servlet returns simple question string
without processing.

cess, which executes in a separate thread through the
whole period of servlet lifetime.

It has to be noted that server-side inference can be
successfully applied to creating web interfaces for com-
plex systems using distributed knowledgebases with
distributed inference, or in cases where database access
is desired. Since all inference takes place on the server,
JULIA frame world instances can access databases or
remote JULIA-based servers seamlessly to the user,
provided necessary tools and protocols are installed on
the server. User only accesses the site using standard
HTTP protocol.

3.2 Using server-side inference in intelligent
adaptive testing

Described approach has been applied for creating in-
telligent application for adaptive testing6. While most
of the adaptive testing approaches use numerical and
statistical methods for estimating the knowledge of
the individual being tested and to adjust the diffi-
culty level of further questions, in intelligent adaptive
testing an expert system is used to build the inter-
nal model and estimate the level of the individual’s
knowledge. The expert system is based on the expert
knowledge of teachers and tutors in the subject, and
allows to represent such knowledge in much more flex-
ible manner, then using just difficulty level and top-
ical categorization for questions. As a consequence,
the system only asks the number of questions it needs
to obtain the clear picture of the testee’s knowledge
(not a fixed number of questions like in most of the
existing systems), and difficulty level of further ques-
tions is adjusted according to the principle of gather-
ing more information while asking less questions. To
make tests more random for different users, the knowl-
edgebase uses random rule selection strategies, draws
limited number of questions from large question pool,
and also uses dynamic question generation by custom
algorithms written in Java, or specified using simple
template language.

As a result the framework for intelligent adaptive
testing has been developed, which can be applied
in different areas by developing different knowledge-
bases. The system is now introduced into proba-
tion use on the Faculty of Applied Mathematics and
Physics of Moscow Aviation Institute for testing stu-
dents in courses of Computer Science and Logic Pro-
gramming. More detailed description of the system
can be found in [9].

6The implementation of intelligent adaptive testing frame-
work has been developed in cooperation with Olga Malkina,
graduate student of Moscow State Aviation Technical University

4 Technologies for Building Intelligent Web Applications based on JULIA Toolkit

Figure 2: Client-side inference
3.3 Client-side inference

An alternative to server-side inference is client-side in-
ference, where JULIA Toolkit is used as Java applet,
and inference takes place separately on each client (see
Fig.2). In this case knowledgebase (frame hierarchy
and production rules) also has to be downloaded to
the client prior to starting inference, which can cre-
ate significant network traffic load. However, for rel-
atively small projects the load is not too high: full
JULIA class library is only about 130 Kb large, and
can be stripped down to around 70-80 Kb by remov-
ing unnecessary functionality (unused add-ons, rule se-
lection strategies, database access components, frame
definition language parser, remote-access frames, etc.).
Further minimization of knowledge-base size can be
achieved by implementing more space-consuming se-
rialization algorithms, and using on-the-fly compres-
sion/decompression.

For larger knowledgebases further optimization in
network traffic and distribution of network load among
the whole inference process can be achieved by rules-
on-demand and further by frames-on-demand
loading. It can be noted [3] that during backward
inference only some production rules are used in each
case, and the majority of rules are not necessary. The
same is true about frame hierarchy: while it describes
the general model of the problem domain, in any given
case only some sub-hierarchy is used.

Therefore, it makes sense to load rules correspond-
ing to any given slot only when they are actually re-
quired to be used in inference. It is achieved by using
a rule stub instead of the actual rule in the frame hi-
erarchy, which loads the body of the rule from the
serialized file only when the rule is required during in-
ference. Creation of rules-on-demand serialized files is
automated by JULIA parser: when rules-on-demand
flag is on, all following rules are created as rules-on-
demand, i.e. rule stubs are inserted into frame hierar-
chy, and corresponding serialized files for each rule are
created on disk. While the whole knowledgebase occu-
pies slightly more space (some extra space is taken by
rule stubs), it minimizes network traffic during each

individual consultation.
For simple rule selection strategies (first rule first,

random, etc.), the rules are loaded only when they are
fired, i.e. when their premises need to be calculated,
while more complex rule selection strategies where the
rule premises need to be known before conflict resolu-
tion require all rules for a given slot to be pre-loaded
before slot value resolution. Regardless of this, rule-
on-demand loading requires only frame hierarchy to be
pre-loaded before inference begins, and rules are then
dynamically loaded during the inference process.

Even more minimization of network traffic for some
problems can be achieved by frames-on-demand load-
ing. Each frame in the source knowledgebase file can
be declared as loaded on demand, in which case frame
stub is inserted into the hierarchy, and the actual seri-
alized frame file is loaded only when some operations
are required on the given frame. For some problems
where more or less all frames in the model are some-
how used in the consultation (for example those re-
quiring frame matches for object sub-classing based
on constraints) this may not give any significant ben-
efit, while in other cases (for example, when cate-
gory of the object is determined on the basis of rules,
and then only corresponding frame sub-hierarchy is
used) it allows to reduce the amount of knowledgebase
transferred quite significantly. In addition, frames-on-
demand loading can be used in conjunction with rules-
on-demand, thus making the system separated into a
number of small serialized files, which are loaded as
needed.

3.4 Implementation of web site promotion ex-
pert system using client-side inference

Client-side inference has been used in the implemen-
tation of an expert system for planning promotion
campaigns for web sites and optimizing web site for
promotion7. The expert system uses backward infer-
ence, and is capable of optimizing different promotion
steps under given financial constraints based on user’s
anwers to a large set of questions. In addition, the
system uses a specific plug-in written in Java, which
gathers keywords from different web sites in a speci-
fied category, and optimizes them to create a unique
set of keywords for the given resource, which can signi-
ficantly improve the position of the resource in search
engines listings. Since this process requires download-
ing and analyzing a number of third-party web pages,
it has been decided to implement the system on the
client side, so that all network traffic goes through
the client directly. To minimize network traffic to the

7The implementation of the system and the development
of the knowledgebase has been done is cooperation with Irina
Krasteleva, graduate student of Moscow State Aviation Techni-
cal University

Workshop on Computer Science and Information Technologies CSIT’2001, Ufa, Yangantau, Russia, 2001 5

server, rule-on-demand and frame-on-demand loading
is used where possible.

System prototype is located at
http://promoweb.shwarsico.com. The user
interface of the system is basically that of the Java
applet, and is primarily intended for asking questions
to the user and showing the results of the reasoning
for a particular case.

3.5 Tutoring system based on client-side in-
ference and applet-browser interaction

One disadvantage of the system described in previous
section is that the user interface is determined by the
Java applet, and thus it would be quite difficult to
use expressive formatting in the system-user dialogue
(because some sort of rendering engine would have to
be implemented in the applet itself).

One of the solutions to this problem when using
client-side reasoning is to use applet-browser interac-
tion, and to open arbitrary HTML files in the browser,
while keeping the reasoning applet running either in-
visibly, or being responsible for some subset of the
user interface. This approach is being applied in de-
velopment of complex knowledge-based tutoring sys-
tem, which combines intelligent adaptive testing tech-
nology described above with the hypertext course ma-
terials enhanced by intelligent browsing capability. In
the process of completing initial entry-level test, the
model of individual’s knowledge on the subject is con-
structed, which contains the areas of weak knowledge
that require improvements. Then, in the process of
backward-chaining reasoning the user is asked a se-
ries of questions that help target the weakness, and
then he is redirected to the corresponding section of
the hypertext course. An immediate problem or one
of the test questions on that section is also offered,
and the ability or inability to solve it allows to cor-
rect the user’s knowledge model to reflect the changes.
Also, some straightforward browsing paths are pro-
vided through the course without initial test, like
chapter-by-chapter browsing with intermediate ques-
tions, that form the model of the user’s understanding
while studying through the hypertext material.

At any time, the current user understanding model
in the form of frame hierarchy with some slots filled
in can be saved as a serialized file for later use. When
the course is finished, the final test is performed, which
then allows to give the estimate on the effectiveness of
the education by comparing initial test results with
the final one. The comparison is only approximate, as
the actual questions may differ, but it is possible to
draw very informative conclusions by comparing some
variables responsible for user knowledge representation
in different subject areas.

Figure 3: Three-tier model
The same knowledgebase developed for one sub-

ject can be used with minimal modifications in the
server-side inference scheme. However, the client-side
implementation allows placing such a system on any
web server into public use, while server-side solutions
are more suitable for implementations involving e-
commerce soltions or in-house testing.

3.6 CORBA-based three-tier model

Finally, let us mention the three-tier model which is
considered to be one of the most popular and pro-
gressive approaches in the implementation of modern
client-server systems[11]. In this model, distributed
system consists of the client part implemented as an
applet (which runs a limited subset of JULIA responsi-
ble for user interface and maintaining a small subset of
frame hierarchy responsible for a particular case), and
JULIA server (which contains main part of the frame
hierarchy with most of the production rules) communi-
cating through any remote protocol (CORBA, XML-
RPC or Java RMI — see Fig.3). In this model, sev-
eral clients can access one reasoning server, given that
all problem-specific knowledge is accumulated on the
client-side part of the frame hierarchy. Alternatively,
different server-side frame hierarchies can be created
for different clients, in which case client can only be
responsible for calling JULIA server remotely, with all
problem-specific static knowledge being stored on the
server side. In such model, remote databases can be
accessed both from the server or from the client (using
CORBA or JDBC protocols), as seems more appropri-
ate from the point of view of implementation.

4 Intelligent Active Server Pages

4.1 Overview and related technologies

Techniques discussed in the previous section can be
successfully applied for remote consultations, i.e. for
knowledge exchange between two network nodes: web
server and client, with inference process taking place
on one of the nodes. The three-tier model can in
principle be used for cooperative inference between
different servers communicating over RMI or IIOP,
and loading additional knowledge from serialized files.

6 Technologies for Building Intelligent Web Applications based on JULIA Toolkit

However, in each case the source knowledgebase has
to be converted into searialized form, and CORBA- or
RMI-based JULIA server has to be started on each of
the servers.

In this chapter we would discuss more complex tech-
nology that we would call Intelligent Active Server
Pages (IASP), which uses HTTP for communication
between network nodes, and allows to construct web
pages that incorporate knowledge into HTML design
much in the same way as traditional Active Server
Pages (ASP) Technology is used to mix HTML and
programming code in traditional imperative languages
(Visual Basic, JScript, Perl, etc.). IASP can be viewed
as a similar paradigm for mixing HTML and declara-
tive knowledge, represented in the form of frame model
and accompanying production rules. In addition, such
Intelligent Active Pages would be intended not only for
producing HTML output to the user, but could also
be invoked non-interactively from another pages, thus
creating distributed frame hierarchy with distributed
inference. Other ways of exchanging knowledge be-
tween network nodes, implemented in JULIA toolkit,
can also be used in IASP, giving the developer the
most advanced functionality in creating complex intel-
ligent systems distributed over the net, utilizing either
of HTTP, XMP-RPC, RMI or CORBA/IIOP proto-
cols for communication.

The idea of presenting the web as a collection of
inter-operating intelligent pages is not new. [1] de-
scribes the system called LogicWeb, where each web
page is viewed as a logic program, which can be used
in cooperation with other pages to achieve complex
reasoning task. An extension to Prolog syntax and to
the logic programming paradigm is presented, and the
system is implemented, with LogicWeb engine running
on one machine, and logic programs from other pages
loaded on demand from the net. Processing of each
complex request results in the growing collection of
logic programs loaded into the system from the web,
which interoperate according to introduced concept of
context switching to produce the final result. All log-
ical inference takes place on one client computer that
runs an instance of LogicWeb system, which includes
Prolog Interpreter and specialized accompanying soft-
ware.

The approach presented in this paper is in a way
similar to LogicWeb, but uses frame knowledge repre-
sentation and inference in the set of production rules as
the underlying paradigm for representing intelligence.
Each page is viewed as a separate frame world, which
can either be executed on a remote computer (this re-
turning the result of its execution), or downloaded and
included into local frame hierarchy. To achieve more
complex interoperability between frame worlds located
on different computers, more powerful communication

Figure 4: Intelligent Active Server Pages Architecture
protocol is needed, like CORBA or RMI. However, the
functionality offered by simple HTTP interoperability
turns out to be powerful enough for most applications.

4.2 IASP format and translation rules

Each IASP page contains some or all of the following
sections, which can also be mixed:

• Visual representation contains HTML code for
displaying the page, which may include variables
or expressions in the Frame definition language
embraced by <%= and %>.

• Knowledge representation, surrounded by <%
and %>, which is the arbitrary code in frame defi-
nition language that is included into frame world
representation of the page.

• Dialog template, surrounded by <%> and </%>,
that define HTML design templates of interme-
diate pages used during backward chaining infer-
ence in the interactive mode (see below).

The suggested implementation (see Fig.4) uses
IASP processor located on each IASP-enabled web
server. When IASP page (i.e. a page containing some
production rules or frame definitions in addition to
normal HTML) is requested from the server, IASP
processor:

• creates the corresponding frame world by parsing
the IASP file and producing frame hierarchy,

• fills values of some slots in the model according
to the HTTP variables passed to the page using
either GET or POST method,

• evaluates the resulting frame world to obtain the
result. Note, that the evaluation can result in

Workshop on Computer Science and Information Technologies CSIT’2001, Ufa, Yangantau, Russia, 2001 7

some other frame worlds being downloaded from
the web, or in other more complex activities.

The following principles are used for creating frame
world from the IASP page:

• Knowledge representation sections are directly in-
terpreted and compiled into the internal repre-
sentation according to the standard parsing algo-
rithm used in JULIA toolkit. Optional %> ... <%
construction can be used to mix complex HTML
constructions in string constants, for example

IF diagnosis=’flu’ THEN goal=%>
<H1>You have got flu!</H1>
<P>Caution: Flu is a kind of
infection which is easily transmitted....

</P><% ;

• Visual representation containing of the mixture of
HTML elements and FMDL expressions is trans-
formed into one string expression assigned to the
Response.Body variable. For example, the fol-
lowing fragment:

<HTML><BODY>
<H1>The result is
<%=MainFrame.Result1 + MainFrame.Result2%>

</H1>
</BODY></HTML>

is equivalent to the following FMDL statement:

SET Response.Body=
’<HTML><BODY><H1>The result is ’+
(MainFrame.Result1+MainFrame.Result2)+

’</H1></BODY></HTML>’

• Dialog template is basically stored as is in the
Runtime.DialogTemplate slot.

4.3 IASP Page Invokation

When the frame world is created for a given page,
all variables passed to it using either GET or POST
method are stored as corresponding slot values of
Request frame. The parameter can either be passed
as a normal value generated by HTML form, in which
case the corresponding slot will be of simple SCALAR
STRING or LIST STRING type8, or they can be encoded
as XML VALUEs according to JULIA conventions,
which is automatically recognized and can result in

8Singular parameters will be represented as strings, while
multiple parameters with the same name, like in <SELECT

MULTIPLE>, would be represented as a list of strings.

values of any specific complex type being passed. All
invokations of IASP pages from other pages or pro-
grams in non-interactive manner normally use XML
representation to preserve slot value types.

In addition, Runtime.Method is set to either GET
or POST according to the request method used,
Runtime.Mode is set according to the page invokation
mode, and Runtime.Type is set according to the in-
vokation type (see below).

The process of setting the slot values according to
input variables occurs after the frame world has been
fully created, and that is where forward-chaining in-
ference can take place. Runtime slot values are as-
signed first, so that forward-chaining rules assigned to
Request slots can use the information on type and
mode of invokation.

4.4 Invokation mode and type

IASP page is normally invoked either by the user (di-
rectly by specifying the URL, or from HTML form,
resulting in some HTML output to be displayed in the
browser), or by another IASP processor or automated
web system. In the first case (so-called visual invoka-
tion), visual representation of the page is obtained
by calculating the value of Response.Body variable,
which is then returned to the client. In the second
case (non-visual invokation), the HTML visual rep-
resentation part of the page is ignored, and the name of
the slot to calculate should be passed via goal HTTP
variable while calling the script. In this case IASP
processor obtains the value of the specified slot, and
returns it to the client in the XML representation9.
Thus, the same page can be used both by the visual
HTML client (web browser), and by non-visual agents.
Some pages, however, can be explicitly designed for
non-visual invokations, in which case visual represen-
tation part would be missing. The type of invokation
(visual or non-visual) is contained in Runtime.Type,
and is determined by the presence of goal HTTP re-
quest variable.

When a page is invoked, and the value of the
goal is being obtained, some further questions may
arise as a result of backward chaining inference. If
the knowledgebase contains ASK statements for ask-
ing such questions to the client, the page can re-
turn a question instead of the final answer, using
Runtime.DialogTemplate10. When the user answers
the question, the result is passed back to IASP proces-

9For convenience of building web applications, if the value
being returned begins with <HTML>, the value is returnes as is,
and is displayed to the client as HTML page. This allows to
construct pages that result in HTML output even when invoked
non-visually.

10When the page is invoked non-visually, the question is re-
turned in the XML-form suitable for automated processing

8 Technologies for Building Intelligent Web Applications based on JULIA Toolkit

interactive non-interactive
visual Typical invokation

by the user when

backward chaining

is used, and the in-

ference is driven by

questions-answers

dialogue

Invokation from the

web form, when the

user fills in all ini-

tial values, and gets

the result of the in-

ference in one cycle.

Excellent for sim-

ple reasoning appli-

cations with few ini-

tial facts.

non-visual Rarely used due to

complexity of im-

plementation – typ-

ically is replaced by

CORBA/IIOP

interoperability.

Used in automated

in-

vokation from other

IASP page by pro-

viding all initial val-

ues, and obtains the

result in one cycle.

Table 1: Summary of invokation modes and types
sor, which associates it with previously created JULIA
frame world (in the same manner as discussed in sec-
tion 3.1) and proceeds with inference. This mode of
invokation which results in the dialog with the client
is called interactive mode.

In some cases, it is undesirable to initiate a dialog,
and it is only needed to see if the result can be ob-
tained from the data provided to the page upon the
request. In this case, invokation mode (interactive
or non-interactive) can be explicitly specified in the
mode request varialble. If ASK action is encoun-

tered in non-interactive mode, it fails, and backtrack-
ing is initiated. If the page does not contain any ASK
statements, it always behaves as though invoked non-
interactively, regardless of the explicit mode specifica-
tion.

4.5 Interoperability of IASP pages

Different IASP pages can be used in conjunction in
one web applications through the following forms of
interoperability:

• Invokation, when one IASP page invokes an-
other one non-visually, thus causing some logical
inference to take place on another IASP server.
Invokation is performed using &IASP Call(URL,
goal) built-in function, returning the value pro-
duced by the remote page. Also, non-IASP page
can be called in the same manner, providing it
returns XML-compatible JULIA Value. Pages re-
turning arbitrary HTML output can be invoked
by &WebCall funtion, returning the page descrip-
tion frame descendant from WebPage, that con-
tains different elements of the page parsed into
corresponding slots.

Simple invokation cannot normally be used
interactively11, i.e. the page invoked cannot use
callbacks to determine the values of the calling
frame world. This, it is not possible for the dy-
namic knowledge to propagate through the in-
vokation, and the page being called therefore be-
haves autonomously.

One specific case of invokation is combination,
in which different IASP pages, responsible for
solving the same problem using different knowle-
dge, are invoked simultaneously with the same ini-
tial data, and then the results returned are com-
bined (and, possibly, post-processed to be pre-
sented to the user in required way) to form the
final result to the user. Different algorithms for
combination could be used, including some rea-
soning on the results returned.

• Inclusion, by means of which the knowledge con-
tained in the remote IASP page can be down-
loaded, parsed and included into the current JU-
LIA Instance, either as a separate frame world
that interoperates with the original world using
standard JULIA methods (side-inclusion), or as a
sub- or super- frame hierarchy (sub- and super-
inclusion). Also, rules-on-demand and frames-on-
demand loading from remote knowledge reposi-
tory can also be used with IASP.

An interesting variant of inclusion is multiple
consecutive inclusion, when a certain frame
sub-hierarchy (consisting of one or more frames) is
consecutively attached as a sub-hierarchy to dif-
ferent frame worlds, thus using dynamic know-
ledge of those worlds in turn. This provides
an alternative to blackboard architecture [13],
where different knowledgebases operate on the
same static knowledge repository. Attached sub-
hierarchy acts as a blackboard, and it can also
contain certain knowledge of its own. The dif-
ference is that in blackboard architecture all ex-
pert systems have access to the blackboard, and
the inference can take place simultaneously, while
in the case of consecutive inclusion at any given
time the inference takes place only in one frame
world. However, using different switching algo-
rithms it is possible to control the way in which
dynamic knowledge from different frame worlds is
combined.

• Complex interoperability using JULIA
distributed features available through
CORBA/IIOP protocol or similar. It allows to

11Additionally, explicit non-interactive invokation mode al-
lows to ensure that no intermediate questions are returned to
the original request

Workshop on Computer Science and Information Technologies CSIT’2001, Ufa, Yangantau, Russia, 2001 9

call another JULIA server and establish two-way
reasoning session, thus creating distributed
frame hierarchies in which dynamic knowledge
from upper levels can propagate to the lower
levels located on different computers by means of
two-way exchange of slot values.

• Database connectivity, interoperability
with Java classes, and moving code
interoperability, which is achieved by means
provided by JULIA toolkit.

4.6 Other features of IASP Processor

When designing large reasoning expert system with
many rules and relatively small visual component, it
may be inconvenient to store the page in the source
IASP form, because the IASP processor would need
to parse it upon each invokation. To avoid this, IASP
processor also supports invokation of serialized JULIA
frame worlds directly: when the requested URL points
to serialized world file (with .jsw extension), the world
is instantiated, and then slot values are filled and in-
ference is started in the same way as when invoking
IASP page.

As far as implementation is concerned, IASP pro-
cessor can be implemented in one of the following ways:

• As a separate web server application, which would
service standard HTTP requests to normal HTML
pages in addition to providing IASP processing.

• As a Java Servlet application, which is used
in conjunction with third-party web server
(Apache). In this case, URL rewriting may be
required to achieve smooth and clear URL nam-
ing conventions.

• As web server plug-in, which is automatically
invoked by web server (Apache or Java-based
servers) when pages with certain extensions or
types are encountered in the request.

In addition to support of IASP technology, it is con-
venient to implement JULIA CORBA-based server on
the same host, so that all IASP pages can also be used
in response to CORBA requests in web application re-
quiring complex interoperability. Configuration of the
JULIA toolkit used in servicing requests also deter-
mines if the instance of IASP processor has access to
a database, either on the same, or on different server.

4.7 Relation to other DAI paradigms

The dominating paradigm for the development of dis-
tributed knowledge-based systems is agent paradigm
[12], where large and distributed intelligent system is

viewed as a collection of smaller components called au-
tonomous agents, which act cooperatively to achieve
a complex task. The relation of distributed funtional-
ity of JULIA toolkit to the agent architecture has been
discussed in more detail in [4]; here we will just outline
some agent-like features of the proposed IASP archi-
tecture.

The main property of agents is autonomy, i.e.
each agent considered separately should be able to per-
form some task on its own. This property is also true
for IASP page, which contains separate frame model,
which is typically able to perform reasoning by itself,
provided the initial data. Agents are capable of re-
acting to the changes in environment by performing
certain actions. For IASP page, the environment is
constituted by the set of initial request variables with
which the page is invoked, and the page can then per-
form actions or produce result as a reaction to the
environment. IASP page can inter-operate with other
IASP pages, thus a set of pages can achieve more com-
plex task, which is very similar behaviour to the soci-
ety of agents.

Typically, several other properties ofter exhibited
by different types of agents can be noted:

• Mobile Agents act by transferring their exe-
cutable code through the net and working re-
motely. In IASP paradigm, code is represented by
frame hierarchy with the attached actions that are
responsible for reasoning, thus inclusion operation
provides functionality typically exhibited by mo-
bile agents. Since JULIA world can be serialized
at any time and transferred to another network
node (as it happens, for example, when multiple
consecutive inclusion is used on the server-side)
with its state preserved, it is also possible in some
cases12 to create learning mobile agents.

As far as the execution of arbitrary mobile code
is concerned, the extension to JULIA library can
be developed that provides this functionality to
Java-implemented frames, in which case the full
flexibility of mobile code system will be achieved.

• Adaptive/Learning Agents are capable of
changing their behaviour according to the knowle-
dge gained from observing the changes in environ-
ment with time. According to the IASP architec-
ture discussed, the state of inference (and thus all
internal knowledge accumulated during page ex-
ecution) is lost after invokation, thus preventing
the system from being able to accumulate knowle-
dge of its environment. To some extent this prob-
lem is solved by using persistent database frames,

12In the present design, JULIA world cannot be serialized in
the middle of backward chaining loop

10 Technologies for Building Intelligent Web Applications based on JULIA Toolkit

slots of which are actually stored in the external
relational database, and thus retain their value
from one invokation to another. Also, IASP ar-
chitecture can be extended by allowing serialized
frame worlds to be updated after execution, or
even by creating serialized version of each IASP
page which is stored from one invokation to an-
other much like the session is stored in ASP.

However, even though proposed IASP architecture
exhibits the functionality typical for multi-agent sys-
tems, there are certain differences. One of the main
goals of IASP and distributed JULIA functionality was
to provide the support for distributed frame hierar-
chies, where the knowledge located on one computer
would be applied accross the network boundary to
the inherited sub-hierarchy located on a different com-
puter. Thus, complex distributed application would
rather consists of non-autonomous parts in the tradi-
tional sense, but inherited parts would depend on the
functionality of the parent.

5 Conclusion

In this paper the complex architecture for building in-
telligent web applications has been considered, which
greatly extends the functionality of simple remote con-
sultations, and bring intelligent web application closer
to multi-agent systems. With this technology, the
knowledge for solving complex problems can be dis-
tributed over the net in organized hierarchical or cross-
linked manner, and can be used collectively to solve
complex resoning problems. Knowledge located on
different network nodes can be maintained indepen-
dently, in the manner typical for component-based
architectures. With special features like seamless
database access, ability to include arbitrary Java code
into the knowledgebase and extend the basic function-
ality, access to CORBA and EJB objects and others,
IASP architecture presents very attractive set of tools
for buliding intelligent web applications.

Due to the size limitations of the article, possible ex-
amples of use of IASP technology, as well as ontology-
based methodologies for creating and maintaining dis-
tributed knowledgebases, have not been considered.

Acknowledgements

I would like to express my gratitudes to all graduate
students of the Computational Mathematics and Pro-
gramming Department of Moscow Aviation Technical
University who worked with me on the projects men-
tioned in this paper, the department staff, in particu-
lar Zaytsev V.E. for his scientific leadership, my family
for their understanding, and Ortal Saar for intelligent
discussions on philosophical aspects of DAI.

References

[1] Seng Wai Loke, Adding Logic Programming Be-
haviour to the World Wide Web, PhD Thesis, De-
partment of Computer Science, The University of
Melbourne, Australia, 1998.

[2] Web site of Zope: http://www.zope.org.

[3] Soshnikov D. An Approach for Creating Dis-
tributed Intelligent Systems. In J.-C. Freytag
and V. Wolfengagen, editors, Proceedings of the
1st International Workshop on Computer Science
and Information Technologies, Moscow, Mephi
Publishing, 1998. pp. 129–134.

[4] Soshnikov D. Software Toolkit for Building Dis-
tributed and Embedded Knowledge-Based Sys-
tems. In Proceedings of the 2nd International
Workshop on Computer Science and Information
Technologies, Ufa, USATU Publishers, 2000. pp.
103–111.

[5] Gavrilova T.A., Khoroshevsky V.F. Knowledge-
bases and Intelligent Systems, Piter Press, St. Pe-
tersburg, 2000. (in Russian)

[6] Web site of AMZI Prolog: http://www.amzi.com

[7] CLIPS Web Page:
http://www.ghgcorp.com/clips/CLIPS.html.

[8] Web site of JESS: Java Expert System Shell,
http://herzberg.ca.sandia.gov/jess/

[9] Malkina O., Soshnikov D. Creating Interactive
Systems of Adaptive Testing through the Inter-
net using Intelligent Technologies. In Selected Ab-
stracts of 9th International Workshop ”New In-
formation Technologies”, Moscow State Institute
of Electronics and Mathematics, 2001. (In Rus-
sian)

[10] Krasteleva I., Soshnikov D. Promotion of Web Re-
sources using Intelligent Technologies. In Selected
Abstracts of 9th International Workshop ”New
Information Technologies, Moscow State Institute
of Electronics and Mathematics, 2001. (In Rus-
sian)

[11] Orfali R., Harkey D., Edwards J., Instant
CORBA, Wiley Computer Publishing, 1999.

[12] Hyacinth S. Nwana, Software Agents: An
Overview, Knowledge Engineering Review, Vol.
11, No.3, 1996. pp. 1–40.

[13] Pfleger K., Hayes-Roth B., An Introduction
to Blackboard-Style Systems Organization, KSL
Technical Report KSL-98-03, Computer Science
Department, Stanford University, 1997.

Workshop on Computer Science and Information Technologies CSIT’2001, Ufa, Yangantau, Russia, 2001 11

