

Workshop on Computer Science and Information Technologies CSIT’2002, Patras, Greece, 2002

Using Dynamic Ontologies based on Production-Frame
Knowledge Representation for Intelligent Web Retrieval

 Eugene Sizikov, Dmitri Soshnikov
 sizikov@mail.ru, dmitri@soshnikov.com

Department of Numerical Mathematics and Programming
Moscow Aviation Institute (State Technical University)

Moscow, Russia

Abstract

The paper considers problems of intelligent
information retrieval in distributed environments
such as the World Wide Web. Features of an
experimental ontology-based intelligent retrieval
system Jewel are discussed. Presented technology is
based on the idea of including additional specialized
ontological knowledgebase into the hypertext
documents, forming distributed production-frame
knowledge representation. Ontology-based hypertext
annotation uses special language and allows
multilevel description of any problem domain. The
developed retrieval system implements search in
space of hypertext documents complemented by
ontologies by logical inference in clusterized
production-frame index knowledge base.
Implementation details are presented, that exploit
functionality of JULIA [1] toolkit for distributed
production-frame reasoning in a collection of
(possibly distributed) frame sub-hierarchies.

1. Introduction
The World Wide Web rapidly extends and penetrates into
numerous spheres of human activity.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the CSIT copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Institute for Contemporary Education JMSUICE. To
copy otherwise, or to republish, requires a fee and/or special
permission from the JMSUICE.
Proceedings of the 4th International Workshop on
Computer Science and Information Technologies
CSIT’2002
Patras, Greece, 2002

Users have two main tools that help them to locate
relevant resources on the Web: search engines and
catalogues.

Most of the existing search engines are based on keyword
search that does not consider information context, which
results in many irrelevant links being returned as a result
of search. Catalogues are manually constructed by
experts, but in many cases there are distinctions of
classification criteria between experts and users. Another
disadvantage of catalogues is their large creation time.

Thus developing new ways of relevant information
retrieval is an extremely important task, since existing
search technologies become unable to satisfy growing
requirements of the Web.

The Web developers and other specialists in information
systems can offer number of various ways of constructing
search systems and among them there are systems based
on artificial intelligence.

We can identify the following subtasks related to
intelligent search systems:
• Drawing up query from user’s request in natural

language;
• Extraction of knowledge from available Web

resources;
• Giving reasonable answers to the queries by using

extracted knowledge, in natural language.

An important point of this list is knowledge extraction.
Unfortunately, there is no general solution to the problem
of knowledge extraction from natural language. The task
of drawing up queries from user requests in natural
language is easier to solve, because of more strict query

Using Dynamic Ontologies based on Production-Frame Knowledge Representation for Intelligent Web Retrieval

through which the answer should be stated, thus the
natural-language search system should contain some
knowledge of the problem domain concepts having unique
verbal description.

One of the ways to make Internet search more intelligent
and solve some of the mentioned problems is the
transition to Semantic Web [6]. It is based on embedding
knowledge into Web resources in the form of ontologies,
which are formal specifications of conceptualization of
some problem domain. Ontologies are intended for
building multilevel descriptions of problem domains and
can be used for sharing explicit knowledge between
agents in the Web.

2. Related projects
The idea to use ontologies in intellectualization of the
Web space has been embodied in numerous projects.

One of examples of common ontology system is CYC
project, developed by ? YCorp [2]. The project includes
generation the extensive ontology system which would
describe more than 1010 concepts and axioms about
common notions in practically all areas of human activity
(common knowledge). CYCorp has developed special
language CYCL for knowledge manipulation, as well as
specialized logical inference tools.

Another example of using ontology system is the
Knowledge Annotation Initiative of the Knowledge
Acquisition Community (KA2) [3]. It is the international
project with main purpose to provide the intellectual
search in the web and automatic accumulation of new
knowledge. The project consists of the following parts:

• ontology-based annotation of web pages;
• ontological engineering;
• organization of the search interface and logical

inference in distributed ontologies.

This projects suggests extending HTML syntax by a
special description tag <ONTO> in order to provide
additional knowledge inclusion directly to the Web pages.
The otology engineering of this project is based on the
Ontolingua toolkit.

For providing the search ability (KA)2 uses Ontocrawler
subsystem. Special Ontobroker software is developed for
managing search actions by using search queries with
internal search language.

There are also smaller projects, and among them
perspective SHOE search service (Simple HTML
Ontology Extension) [4], developed by the faculty of
Computer Science of University of Maryland (USA). In

this project ontology information is also embedded into
web pages using extension of HTML through the group of
special tags. In SHOE the formal logic is used as a basic
formalism for knowledge representation.

In most of the above-mentioned projects the information
providers can annotate their documents and expand
domain ontologies by new specific concepts.

Other approach to the given problem is demonstrated by
the W3C (World Wide Web Consortium). The project
SemanticWeb [5] developed by this organization uses
XML (Extensible Markup Language) for Web documents
annotation. W3C has developed the special format for the
resource description called RDF (Resource Description
Framework). The meta-information determined by a RDF
is placed as additional page or block inside each web-page
as additional representation of semantic information of the
resources.

The list of projects based on ontological resource
annotations can be continued. The technology presented
here also follows the same principles of embedding
ontological annotations inside web documents – the main
difference from other projects is the way intelligent search
is reduced to the process of logical inference in the index
knowledgebase.

3. Architecture
Further we will discuss Jewel intelligent search system
that uses production-frame knowledge representation for
embedding knowledge into web pages in the form of
hierarchical ontological systems. It consists of the
following subsystems (see fig. 1): ontology base, index
system and request broker. For the user, the system
provides two interfaces: the manager (special
administration utility developed as a standalone Java
application) and simple user client (developed as a server-
side Servlet engine). Each of the specified elements in
essence is the agent working within one Java runtime
environment.

Ontology base is the main store of compiled ontologies
represented as a collection of frame worlds obtained
during indexing process.

Index system — the agent intended for organization of
fast search operation within ontology base. The index
gives the interface for direct search operations, i.e. search
actions that can be performed without using a logic
inference. The index keeps:

• Information describing ontology: URL, link to base

ontology and unique name for index system;
• inheritance relations between ontologies;

Workshop on Computer Science and Information Technologies CSIT’2002, Patras, Greece, 2002

• nametables for categories and concepts and their
attributes;

• extension and implementation relations for concepts
for each category;

Ontology compiler is the subsystem intended for parsing
HTML pages. It can automatically add new ontologies
into the store or update existing ones. It is connected to
index system and ontology base, because compilation
process strongly depends on existing ontologies. When
ontology is extracted from initial HTML page that
contains embedded ontology description, it is transferred
into the ontology base and registered in the index
subsystem. During registration subsystem reveals possible
conflict situations that occur, for example, when
nonexistent categories, concepts or their attributes are
mentioned, or nonexistent ontology is used. The syntax of
ontology description language follows the syntax of
JFMDL language of JULIA toolkit [1], with necessary
elements to embed it into HTML and make distinctions
between categories and concepts.

Request broker is the central part of the system
encapsulating all main features. Broker works in
transaction mode. Every transaction represents search
action formulated using specially developed query
language. Search commands are parsed by request broker
API and performed by other subcomponents. Language
contains two groups of commands: administrative
commands (intended for managing of stored ontologies)
and search commands.

Fig. 1: Jewel Architecture

User interface of a retrieval system is represented by two
Java applications. System administration tasks are carried

out by using the graphic shell, the manager. This utility
provides the graphic interface and implements all
functionality of the request broker. For users simple thick
client implemented as Java servlet is offered, which can
perform only search commands.

4. Annotation Techniques
For formulating ontology annotation a special language is
used, based on JFMDL production-frame knowledge
representation language of JULIA toolkit [1]. This
language is extended in order to give possibility of
including ontology-based description into HTML page.
To improve expressiveness of ontology-based annotations
and the efficiency of search the following agreements are
made:
• ontology of HTML page is used for annotation of

only one HTML page and only one ontology can be
defined in the body of HTML page;

• ontology possesses the following properties:
o unique name, which coincides with the URL

of HTML page;
o list of mentioned ontologies that extend

current ontology;
o verbal description of current ontology;

In the body of HTML page ontology description is
formulated using standard HTML tag <SCRIPT> and few
new special tags: <USE>, <CONCEPT>, <SET>,
<ASSIGN>.

Base components of ontology description are categories
and concepts. Category is essentially a prototype frame,
which is the description of a certain phenomenon.
Concept is an instance frame of some category, which
corresponds to the implementation of that phenomenon.
Concept always implements some non-empty category.
Concept’s attributes cannot have associated production
rules except for direct assignment of values, thus a
concept always inherits its dynamic properties from a
parent category.

Let us give a simple example of ontology description.
Assume that we have some Web site that contains a set of
pages about different cars. The following general
ontology can be used:

Page index.html
<HTML>
. . .
<SCRIPT language = ONTODEF>

CATEGORY Firm
{

SCALAR trade_mark;
SCALAR country;

Using Dynamic Ontologies based on Production-Frame Knowledge Representation for Intelligent Web Retrieval

}

CONCEPT Ferrari IMPLEMENTS Firm;
SET Ferrari.name = 'Ferrari';
SET Ferrari.country = 'Italy';

CATEGORY Car
{

SCALAR name DEF 'Car';
REF firm;
// Reference to concept describes
// the manufacturer
LIST models DEF [];
// List of existent modifications
SCALAR speed; // Max speed
SCALAR price;

}

CATEGORY Racer EXTENDS Car
{

SCALAR type;
// Property which show is the racer car
// expensive or it is cheap

}

IF Racer.price>1500000
THEN Racer.type = 'expensive';
IF Racer.age<=1500000
THEN Racer.type = 'cheap';
SET Racer.type = 'unknown';
. . .
</SCRIPT>
. . .
</HTML>

Any page containing information on a specific car can
include the following ontology description:

Page F.html
<HTML>
. . .
<USE 'index.html' AS cars >

<CONCEPT F IMPLEMENTS @cars~Racer>

<ASSIGN F.name> F </ASSIGN>

<SET F. firm = @Ferrari>
<SET F.speed = 350>
<SET F.price = 9000000>
<SET F.modifications = $['F-X', 'F-Y']>
. . .
</HTML>

Thus, a problem domain is described by an ontology
system [5], consisting of a number of individual
ontologies contained within a set of HTML pages.

For search a specific query language is used. The basic
command of that language is the SEARCH operator,
which has the following form:

SEARCH
USE 'address_1' AS name_1

. . .
USE ' address_N' AS name_N
IMPORT LIBRARY library_1

. . .
IMPORT LIBRARY library _M
WHERE <condition>

Condition after WHERE keyword is a logical expression
determining required ontology, which is made in terms of
ontologies from USE list before WHERE. Conditions can
be constructed from expressions connected by logic
operations AND, OR, NOT. Each expression is either a
predicate (INHERITED, IMPLEMENTS, …) or
comparisons. In general, expressions can be arbitrary
JULIA expressions, and thus can invoke arbitrary user
functions from external libraries that should be
decelerated in import list before WHERE keyword. For
each ontology stored in the system Jewel checks the
condition after WHERE in the search process and if the
condition is satisfied (i.e. its logical value is true) — such
ontology is returned as relevant.

Predicate INHERITED(<category>) returns true if there is
a category is inherited from the <category>, and predicate
IMPLEMENTS(<category>) returns true if there is a
concept of category by name <category>. Implicit
expression returns true when there is a concept mentioned
category and for mentioned attribute is satisfied condition
given by <operation>.

According to the example presented above we can
consider a simple request. The page of the Ferrari F can
by found, for example, by name of the car and by attribute
type being expensive:

SEARCH
USE ' index.html' AS cars
WHERE (@cars~car.name == 'F')
AND (@cars~Racer.type == ‘expensive’)

The example shows an intelligent element of the search,
because the type of the car has not been explicitly
specified, but automatically inferred in the process of
logical inference using the knowledge from the base
ontology.

Workshop on Computer Science and Information Technologies CSIT’2002, Patras, Greece, 2002

It has to be noted that and quality and efficiency of search
process essentially depends on quality of ontology
descriptions. The common algorithm of search for our
retrieval system will consist of the following actions:
• Determining the of ontology root, i.e. those

ontologies that do not depend on any other
ontologies. This set of ontology description is the
starting point of search process;

• Selecting ontologies describing the phenomena that
user looks for. It can be reached by studying the
categories in the descriptions of the known
phenomena of the subject domain;

• Pointing to distinctive features of required concept of
just found category and directly requiring this
concept. So the ontology of the Web page containing
the concept is the required one;

In our case the search process consists of two essentially
interconnected parts: search of the descriptions of the
phenomena and search of concrete implementations of
these phenomena.

In real-life systems problem domain description would not
be concentrated in one ontology, as it was made in the
example above. It would be more reasonable to make

multilevel distributed ontology systems. There are three
logic levels for complex ontology systems in the general
case:
• a level of common abstractions. This layer describe

everything in common notions without any
explication;

• a level of phenomena description in terms of the
common abstractions. At this level there should be
concrete descriptions of the phenomena, containing
most of the categories of the specific problem
domain;

• a level of implementations of the phenomena that
contains most of the concepts.

In most of the cases each level will be represented by a
collection of web pages.

Possibly, small ontology systems can mix descriptions
of the first and second level, as it was in given example
above.

5. Implementation details
Implementation of the system is heavily dependent on
JULIA toolkit for storing ontology index knowledgebase
and performing logical inference. Index knowledgebase is
a collection of individual frame worlds (frame sub-

Using Dynamic Ontologies based on Production-Frame Knowledge Representation for Intelligent Web Retrieval

hierarchies, each having its own namespace), and is stored
either as a collection of serialized representation on a hard
disk, or in the object database.

When a SEARCH command is issued, the search process
uses the following algorithm (see. Fig. 2):

In the beginning the list of all relevant ontologies is
determined, forming a candidate set of ontologies. This is
done by the index subsystem on the basis of input query.
As a result all candidate ontologies are instantiated in the
running instance of JULIA server, forming a locally
clusterized frame hierarchy consisting of candidate frame
worlds.

Then, Jewel translates the WHERE conditional expression
of the search request into a specific slot that is inherited
by all concepts in the distributed hierarchy. Evaluating
this slot for each concept in the process of logical
inference would allow selecting a resulting set of
ontologies that contains those concepts corresponding to
true value of the conditional slot.

JULIA toolkit is also used in the process of initial
indexing of web resources. Each ontology present in a
web page is translated to the corresponding frame world,
with concepts and categories represented as frames with
corresponding inheritance relations. Inheritance relations
to concepts defined in other ontologies are represented by
a remote mobile reference to a different frame world.

Distributed functionality of the JULIA toolkit can be used
in the further development of the system, creating
distributed index knowledge bases and ontology systems
based on procedural remote invocation with distributed
logical inference, which would help to distribute the
collected knowledge as well as the inference load
according to some spatial or logical criteria.

6. Conclusion
During the last years IT developers show increased
enthusiasm to use artificial intelligence techniques for the
development of Web search systems.

The basic tasks, which can be successfully solved by help
ontologies, include:
• finding the information which is relevant for user

request;
• filtration and classification of large amounts of

information
• developing common terminology for users and

agents.

Till now opportunities of a logical inference were not
practically applied to the search in the Internet. There are
new prospective usages of the WWW with arrival of
knowledge bases and systems based on explicit
knowledge representation.

Thus, methods of artificial intelligence can strongly
influence tools for extraction of information from the
global networks and are considered as a catalyst for
improving search engines and information structuring in
general.

Moreover, artificial intelligence technologies become
more important with the introduction of Semantic Web by
W3C, because RDF annotations provide standard and
flexible way of document annotation that can be used
more effectively in the intelligent information gathering.
Presented technology does not yet exploit standard RDF-
based annotation method, but in the future, when
Semantic Web gains popularity, can be extended to reason
about pages annotated in some RDF-compatible style.

References
1. D. Soshnikov. Software Toolkit for Building

Embedded and Distributed Knowledge-Based
Systems. In Proceedings of the 2nd International
Workshop on Computer Science and Information
Technologies, Ufa, 2000.

2. Site of CYCCorp http://www.cyccorp.com
3. Knowledge System Laboratory: Interactive Ontology

Server, http://www.ksl.svc.stanford.edu
4. S. Luke, J. Heflin. 1997. SHOE 1.0, Proposed

Specification,
http://www.cs.umd.edu/projects/plus/SHOE

5. http://www.w3.org/Metadata/RDF/Group/WD-rdf-
syntax

6. T.A. Gavrilova, V.F. Khoroshevsky Knowledge bases
of intelligent systems. SPb Piter, 2000. (in Russian)

	Using Dynamic Ontologies based on Production-Frame

Knowledge Representation for Intelligent Web Retrieval
	Abstract
	1. Introduction
	2. Related projects
	3. Architecture
	4. Annotation Techniques
	5. Implementation details
	6. Conclusion
	References

