
Interoperability Semantics in Distributed Frame

Hierarchy

Dmitri Soshnikov
Department of Numerical Mathematics and Programming,

Moscow Aviation Institute (State Technical University)
Moscow, Russia

dmitri@soshnikov.com

Abstract

The paper presents a formal semantics for dis-
tributed inference in the family of intelligent
systems based on distributed frame hierarchy
model. A formal semantics for a subclass of
frame-production systems is presented, based
on denoting a knowledgebase by a frame world
state function W, and then defining an opera-
tional semantics for logical inference in terms
of transformations of this function. Distribu-
ted frame hierarchy is then represented by a
set of state functions with either static or mo-
bile references to each other, corresponding to
static and mobile inheritance or aggregation.
Two types of semantics are introduced for in-
ference in distributed system: equivalent se-
mantics, where distributed system is reduced
to an equivalent state function by means of
combination operator F, and extended se-
mantics, defined on sets of state functions. By
demonstrating equivalence of those semantics
in the class of normal systems we can also
show the equivalence of static and mobile in-
heritance.

Described semantics forms the basic function-
ality of JULIA toolkit for creating distributed

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the CSIT copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Institute for Contemporary
Education JMSUICE. To copy otherwise, or to republish, requires
a fee and/or special permission from the JMSUICE.

Proceedings of the 4th International Workshop on
Computer Science and Information Technologies
CSIT’2002
Patras, Greece, 2002

intelligent systems. Some aspects of imple-
mentation are outlined in [1, 2].

Keywords: Distributed Frame Hierarchy, Se-
mantics of Distributed Inference, Production-
Frame Knowledge Representation, Remote In-
heritance

1 Introduction

Nowadays, with the growing role of global computer
networks and accumilation of vast amounts of infor-
mation, there is a lot of research going on in the field of
distributed intelligent systems. Introduction of certain
level of intelligence into the operations of the World
Wide Web, supported by the recent initiatives of the
W3C, such as Semantic Web, will create much richer
environment for distributed storage of not only infor-
mation, but knowledge. Distributed knowledge sharing
and reuse is also important in less “ambitious” smaller-
scale areas, such as intelligent control of spatially dis-
tributed industrial processes, knowledge-based virtual
corporations, etc.

In [1,2] we proposed a model of distributed frame
hierarchy, which is effective for implementing sys-
tems that require distributed knowledge sharing and
reuse. This model follows deliberative multi-agent ar-
chitecture and serves as a direct physical implemen-
tation of extensible ontology model [4, pp.284–302],
thus exhibiting natural taxonomy-based paradigm of
distribution, making classical object-oriented [3] and
semiotic [4] approaches to knowledge engineering ap-
plicable to creating distributed knowledgebases.

In this paper we present the formal semantics for
logical inference in the distributed frame hierarchy. In
defining this semantics there are two major milestones:
formulating inference semantics for single frame-based
system (so-called frame world) that can later be in-
cluded as a part of the distributed hierarchy, and ex-
tending this semantics to the case of multiple interop-

Workshop on Computer Science and Information Technologies CSIT’2002, Patras, Greece, 2002



erating frame worlds.
Definition of inference semantics for frame-based

system differs from that of traditional programming
languages [5], because the order of execution of diffe-
rent production rules does not depend on the order and
stucture of statements in the knowledge representation
language, but rather on the current state of the static
portion of the knowlegdebase. Thus we propose two-
step definiton of semantics for knowledge representa-
tion language: the input knowledgebase is denoted by
a frame-world state function W, that contains both
structural (static) knowledge of the problem domain
and dynamic production rules in defined expression
syntax, and evaluation function ‖ · ‖ is defined on
expressions containing slot references, that implies a
series of transformations defined on the set of state
functions W.

To formulate the semantics of distributed inference
we first define a distributed system as a set of indi-
vidual frame worlds, and a set of operations (F, J) for
constucting distributed systems from individual frame
worlds. Each distributed frame system can be charac-
terized by a single state function W of an equivalent
system, that is a combination of state functions of
individual frame worlds, on which inference semantics
is already defined. However, to study interoperabi-
lity of different frame worlds in a distributed hierar-
chy we need to define the semantic evaluation func-
tion on sets of state functions, and specifically describe
treatment of remote references, i.e. references to
frames and slots of remote frame worlds. By introduc-
ing static and mobile references we can define seman-
tics of static and mobile inheritance and aggregation,
and also demonstrate the equivalence of complex se-
mantics to that of an equivalent system. From this
follows the equivalence of static and mobile inference
in distributed frame hierarchy.

Before going into the details of inference semantics,
we will briefly introduce the main ideas behind the
model of distributed frame hierarchy.

2 Distributed Frame Hierarchy Model

In distributed artificial intelligence the multi-agent
paradigm is dominating, but it still leaves a lot of
flexibility when the actual system architecture is con-
cerned. There are several well-studied models of agent
behaviours and interactions, as well as certain classi-
fications of agents according to their properties and
interoperability [6].

We can also look at the problem of knowledge sha-
ring from the point of view of traditional distribu-
ted systems and component models. In studying and
constructing complex systems an object-oriented ap-
proach [3] to decomposition turns out to be very pro-
ductive, which in the field of knowledge engineering is

adopted either as frame knowledge representation, and
more recently as a model of ontological systems [4].
Ontologies and ontological systems as such have been
mostly used in formulating an external knowledge of
the problem domain for multi-agent systems, which
can then be either translated to internal knowledge
representation of deliberative agents in the society [7],
or implicitly accounded for in algorithms for reactive
agents.

A model of distributed frame hierarchy pro-
poses to extend frame knowledge representation by al-
lowing frame hierarchy to span several network nodes.
Each node would then contain a frame sub-hierarchy
called a frame world, and different frame worlds
would interoperate to collectively solve a given prob-
lem. Such a model can be classified as deliberative
collaborative multi-agent model, but it also possesses
an important property of being auto-ontological, i.e.
each frame sub-hierarchy defines a natural taxonomic
ontology, which serves as both internal knowledge rep-
resentation used in inference, and external explicit con-
ceptualization of the problem domain.

There are two major types of relations between
frame worlds in a distributed hierarchy: inheritance
and aggregation. Those relations are achieved by
using remote refereneces to frames or slots of a sub-
hierarchy located on different network location. There
are two types of references corresponding to two dif-
ferent types of interoperability: static and mobile
references.

With static reference, when the underlying slot is
to be computed a remote call is made to the network
server for the target frame world, which takes over the
inference until the value is obtained and retured to
the original caller (so-called invocation). For static
remote inheritance the situation is more complex, be-
cause often rules located on the remote host have to be
applied to the data located in the local sub-hierarchy.
In this case a series of remote call-backs is made, han-
dled by two proxy frames on both sides of the remote
inheritance link. Diring this process, dynamic rules re-
main on their original location, and slot values forming
the static knowledge are transferred over the network,
thus resulting in remote knowledge application.

Mobile references provide the opposite behaviour
called inclusion: when such a reference is computed,
the whole remote hierarchy is transferred through the
network in some internal represenation and instanti-
ated locally, thus reducing remote reference to a local
one. In this case dynamic knowledge is also trans-
ferred through the network. Implementations of re-
mote mobile inheritance presents no complications be-
cause both frame worlds after inclusion are located on
the same host.

Presented outline of the distributed frame hierarchy
model is by no means complete, but should provide

Interoperability Semantics in Distributed Frame Hierarchy



the basis for the following sections. More detailed de-
scription can be found in [1,2], where implementation
issues of proposed approach in JULIA (Java Universal
Library for Intelligent Applications) toolkit are also
discussed, and also several areas of applications are
outlined together with actual examples of distributed
intelligent systems that have been implemented.

3 Local Inference Semantics

Semantics of distributed inference in the model of dis-
tributed frame hierarchy is based on inference seman-
tics of systems with production-frame knowledge rep-
resentation. In this section we present operational se-
mantics for a family of production-frame systems with
backward, forward and combined inference. JULIA
toolkit, described in [1, 2], follows this semantics.

Unlike traditional programming languages, where
in some cases denotates can be assigned directly to
language constructs [5, 8], defining semantics for logi-
cal inference can be done in terms of transformations
of knowledgebase state, denoted by a state function
W ∈ W. Initial constructions of the knowledge repre-
sentation language are mapped to the initial state W0

by means of representation language semantics
defined by a funtion L : A∗ → W, where A∗ — set of
finite character strings in some alphabet A represen-
ting a knowledgebase text. Inference semantics is
defined as a function of the form E : E×W→ T×W,
that computes a value of an expression E ∈ E giving
a value x ∈ T, leading to a series of changes in the
knowledgebase state in the process of inference.

3.1 Representation of knowledgebase state

Knowledgebase state is denoted by one function W

that contains both static knowledge in the form
of slot values, and dynamic rules in some abstract
syntax. Frames are denoted by identifiers from some
set I, each having slots denoted by identifiers from
IF . We can identify a slot by complete id from a set
I = {〈f, s〉|f ∈ I, s ∈ If}.

Each slot would have a complex structure S =
〈v, u, {Qi}, {Dj}, {Ck},vq,vd, α〉 ∈ S containing cur-
rent value v ∈ T, default value u ∈ T, set of back-
ward chaining queries {Qi}, set of forward chaining
daemons {Dj}, set of constraints {Ck}, rule selection
strategies in the form of complete order relations on
{Qi}, {Dj}, and activity flag α. By T we would de-
note some set of values, possibly of different types, the
only requirement for which is to form a complete lat-
tice. [8] contains many examples of how such a set can
be constructed, for example as a disjunctive sum of
primitive types. It would in most cases include such
types as integers, lists, references, etc.

State function W : I → S would then map slot ids
to the actual slot values. For simplicity, we would use

constructions as W(f, s).value, and even W.f.s.value
to access individual components of a slot 〈f, s〉. We
would also define the operator [· ← ·] : I×T→W→W
that changes a value of a given slot giving a new state
function:

W[f.s← x] = λ〈f1, s1〉.〈f1, s1〉 6= 〈f, s〉 →W(f1, s1),
〈x,W(f, s).def, W(f, s).queries, . . . ,W(f, s).alpha〉

3.2 Expression syntax

In order to formulate rules and define inference seman-
tics we would need to use some sort of expressions
containing constants, references to slots, arithmetical
and logical operations and some other features con-
tained in the knowledge representation language. Such
expressions may or may not be syntactically equiva-
lent to the original knowledge representation language.
Without describing syntax in detail we will adopt stan-
dard expression syntax, using f.s to denote slot refe-
rence, and b→ u, v as conditional operator that com-
putes u if b is equivalent to true, and v otherwise.

3.3 Expression evaluation

Inference semantics is defined in terms of evaluation
of arbitrary expressions E ∈ E that contain slot refer-
ences. We would use the notation ‖E‖CW1→W2

= v ⇔
〈v,W2〉 = E(E,W1, C), where C is so-called evalua-
tion context. Note, that in this notation W2 is actu-
ally output value of a function, even though it is used
on the left-hand side of the equality.

For all standard arithmetical and logical operations
we would define short-circuit evaluation in the natural
way, that is

‖E1 ~ E2‖W1→W2 =
{
⊥, ‖E1‖W1→W2 = ⊥
‖E1‖W1→W′ ~ ‖E2‖W′→W2

where ~ ∈ {+,−, ∗, /,and,or}. Constants are di-
rectly returned regardless of the state W:
∀x ∈ T ‖x‖W→W = x.

3.4 Evaluation of slot references

The essence of inference semantics is defined by evalu-
ation of slot references. ‖f.s‖ should return the value
of the slot, or intiate the process of logical inference,
applying corresponding rules.

In order to describe application of rules we would
define a funtion µvW→W′(Q) that would compute a set
of expressions Q ordered by a complete order v until
the first non-null value is obtained:

µvW→W′(Q) =


‖ inf Q‖W→W′ , ‖ inf Q‖W→W′ 6= ⊥

µW′′→W′(Q̂), ‖ inf Q‖W→W′′ = ⊥
⊥, Q = ∅ (W′ = W)

Here Q̂ = Q \ {inf Q}, where ordering is defined with
respect to v. Correctness of this recurrent definition

Workshop on Computer Science and Information Technologies CSIT’2002, Patras, Greece, 2002



can be formally demonstrated by traditional methods
of lattice theory.

Using this function, we can define semantics of slot
evaluation in the following manner:

‖f.s‖W→W′ =

W(f, s).value,W(f, s).value 6= ⊥ (W′ = W)

⊥,W(f.s).busy = true

x = µ
W(f,s).vq

W[f.s.busy←true]→W′′(W(f, s).rules),
W′ = Φf.s(W′′[f.s← x, f.s.busy ← false])
(x 6= ⊥)

y = µW′′′→W′′′′({p.s|p ∈ ‖f.parent‖W′′→W′′′}),
W′ = Φf.s(W′′′′[f.s← y, f.s.busy ← false])
(y 6= ⊥)

⊥, otherwise

If the slot value is contained in the current state, it
is returned. Otherwise, we are trying to compute all
query expressions in order to obtain the value, and
then, if needed, evaluate slots with the same name of
all parent frames, computed as ‖f.parent‖. To avoid
infinite loops, when the slot is in the process of evalua-
tion its busy flas is set, and ⊥ is returned upon another
recurrent evaluation.

After some value is obtained, a directed forward
inference function Φ : I→W→W is applied, to see
what can be derived by forward inference as a result
of new slot value having been added to the static por-
tion of the knowledgebase. This function is defined as
a fixpoint of one-step directed inference function
ϕ : A×W → A×W, where A is a set of activation
functions α : I→ {free, todo, done} showing for each
slot its current status with respect to forward infer-
ence. ϕ is monotonic with respect to natural ordering
on A induced by complete order free v todo v done,
and to ordering on W (which assumes that dynamic
portion of the knowledgebase remains constant):

W1 vW2 ⇔ ∀〈f, s〉 ∈ I
W1(f, s).value vW2(f, s).value

(1)

Thus, by Knaster-Tarski theorem we can conclude
the existence of a family of fixpoints Φ̃α(W) =⊔

i ϕi(α, W), that define Φf.s(W) = Φ̃α0[f.s←todo](W).

3.5 Dynamic inheritance

Inheritance relation : in the presented semantics is dy-
namically defined by the parent slot: f : g ⇔ g ∈
‖f.parent‖. This significantly enriches the semantics,
allowing dynamic frame specification by using rules or
specific search functions, but also has to be accounted
for in the definition of evaluation function: whenever
a parent has to be computed, a state change has to be
taken into account.

To model the inheritance we use context of eval-
uation function, and substitute references to the con-
tainer frame in all rules by specific token this, with
specific evaluation rule

‖this.s‖fW→W′ = ‖f.s‖fW→W′

In this manner, when rules from the parent frame are
applied, child frame is passed through evaluation con-
text, and thus all references in rules are made to slots
of a child frame.

3.6 Concluding remarks

Presented semantics is based on partial order defined
on W by (1), and thus does not allow rulebase mo-
dification in the process of inference, as well as meta-
rules for dynamically changing rule selection strategies
and other inference properties, because such modifi-
cations would lead to incomparable state values and
break the monotonicity of inference operator. It also
has to be noted that considered inference is strictly
monotonic, which leads to monotonic inference opera-
tors, and allows to apply Knaster-Tarski fixpoint the-
orem to define the result of forward inference, as well
as to demonstrate existence of evaluation for backward
inference.

4 Semantics of Distributed Inference

There are different approaches to study interoperabi-
lity in distributed problem solving. One of the impor-
tant aspects that can be investigated is knowledge-
theoretic aspect dealing with notions of distributed
and common knowledge in distributed system [9].
Another possibility is to approach the problem from
the point of view of state space search [10] and parti-
tioning it between individual sub-spaces.

In the proposed distributed frame hierarchy model
problem state is formed by slot values, and thus is
distributed. Arcs of state space search graph are also
distributed, because different rules are located on dif-
ferent network nodes. However, search process in this
graph takes place synchronously, with either inference
process being transferred from one frame world to an-
other, or required part of the graph being transferred.

In this paper, instead of studying search process in
the state graph, we would adopt and approach simi-
lar to LogicWeb [11], where semantics is defined in
terms of interoperability of logic programs using spe-
cific combination operators. We would introduce such
combination operator for frame hierarchy, and then ex-
tend semantic function E to be defined on sets of state
functions describing the whole distributed system.

4.1 Definition of Distributed System

By distributed frame system we would mean a set
{W1, . . . ,Wn} of state functions of individual frame

Interoperability Semantics in Distributed Frame Hierarchy



worlds, extended by constructions called remote ref-
erences. Remote reference can be either static (de-
noted by �Wi(f, s)) or mobile (♦Wi(f, s)), and cor-
respond to different modes of evaluation (invocation or
inclusion respectively). Also, we would without loss of
generality assume that sets of frame ids in all frame
worlds do not overlap, i.e. ∀i 6= j Ii ∩ Ij = ∅.

4.2 Combination of Frame World Functions
and Equivalent System

For two frame world functions W1 and W2 we would
define their combination as

W1 F W2 = λf, s.

 W1(f, s), if 〈f, s〉 ∈ I1
W2(f, s), if 〈f, s〉 ∈ I2
⊥, otherwise

This operation is symmetric and associative, which
allows us to extend it for arbitrary number of argu-
ments. In particular, for distributed frame system
W̃ = {W1, . . . ,Wn} we would define F W̃ = Fn

i=1 Wi,
and call it a state function of a distributed sys-
tem. This state function, with remote reference op-
erations removed, would correspond to some non-
distributed system called an equivalent system.

In addition to combination, we can also define
static and mobile hierarchy inheritance opera-
tions:

W1 J
f

W2 = {W1,W2[W2.object.parent← �W1.f ]}

W1 /
f
W2 = {W1,W2[W2.object.parent← ♦W1.f ]}

Those operations produce distributed frame systems
from sub-hierarchies, but they can also be used in the
context of state function, meaning the state function
of a resulting distributed system.

4.3 Equivalent and Extended Semantics

Equivalent system for distributed hierarchy is essen-
tially a non-distributed frame hierarchy described by
ordinary state function, on which inference semantics
has already been defined. We would call this seman-
tics an equivalent semantics of distributed system.
It defines how different slots are computed, but does
not take into account interoperability between frame
worlds in different modes of computation of remote
references.

To take this interoperability into account, we would
define an extended semantic function Ẽ : E× W̃×
C → T × W̃, also denoted by v = [[E]]CW̃→W̃′ ⇔
Ẽ(E, W̃, C) = (v, W̃′). We would also extend the
definition of distributed system by adding a notion
of current frame world. We would denote it by
{W1, . . . ,Wi, . . . ,Wn} = 〈{W1, . . . ,Wn}, i〉, and set
of such systems as W̃.

Evaluation function for expressions without remote
references would be reduced to local inference seman-
tics in the natural manner:

[[E]]{W1,...,Wi,...,Wn}→{W1,...,W
′
i,...,Wn} = ‖E‖Wi→W′

i

Distributed inference would actually be described
by evaluation of remote references.

4.3.1 Mobile Interoperability Semantics

To evaluate a mobile reference the remote frame world
is combined with the current one by means of F opera-
tor, thus removing all mobile references between them
and reducing computation of remote reference to the
local one:

[[♦Wj(f, s)]]{W1,...,Wi,...,Wn}→W̃′ =
= [[f.s]]{W1,...,Wi F Wj ,...,Wn}→W̃′

(2)

If only mobile references are used throughout the
whole hierarchy, then current frame world is never
changed, but it is extended with other frame worlds
as needed. This semantics is very similar to approach
presented in [11], where logic programs are loaded and
combined into one contextual rulebase to be used by
one inference engine.

Remote inheritance also involves passing the con-
text in the form of reference to the base frame to re-
mote hierarchy. However, in mobile inheritance this
reference does not become remote, since it refers to
the original world that has been combined, but still
remains as a part of the current one.

4.3.2 Static Interoperability Semantics

When evaluating static reference, the process of in-
ference is transferred to another frame world that be-
comes active, and further inference uses another state
functions and associated rules:

[[�Wj(f, s)]]{W1,...,Wi,...,Wn}→W̃′ =
= [[f.s]]{W1,...,Wi,...,Wj ,...,Wn}→W̃′

Static inheritance is slightly more complicated, be-
cause base frame reference that is passed through the
evaluation context becomes static remote reference,
which leads to another remote reference appearing in
the evaluation context on the right hand side:

[[�Wj(f, s)]]F{W1,...,Wi,...,Wn}→W̃′ =

= [[f.s]]�Wi(F )

{W1,...,Wi,...,Wj ,...,Wn}→W̃′

(3)

In the inference process driven by Wj state function,
whenever this has to be computed, another remote call
would be made to compute this remote reference, that
would refer to the original frame world Wi. In this
process Wi would again become active, and remote

Workshop on Computer Science and Information Technologies CSIT’2002, Patras, Greece, 2002



reference would be removed according to the following
rule:

[[�Wi(F )]]{W1,...,Wi,...,Wn}→{W1,...,Wi,...,Wn} =
= ‖F‖Wi→Wi

= Wi(F )

4.4 Equivalence of Mobile and Static Intero-
perability

Given a distributed system, we can compute any
slot using equivalent semantics, as though the system
was non-distributed, or using extended semantics that
takes interoperability into account. It would be natu-
ral to expect the results to be identical, however, it is
true only in some class of distrubuted systems that we
would call normal systems. The following statement
express this idea more accurately.

Statement 1 (on static and mobile reference
evaluation). For the normal system W̃

[[♦Wj(f, s)]]{W1,...,Wi,...,Wn}→W̃′ = ‖f.s‖W→W′

[[�Wj(f, s)]]{W1,...,Wi,...,Wn}→W̃′ = ‖f.s‖W→W′

where W = W1 F . . .F Wn — equivalent state func-
tion for the distributed system. Also, upon evaluation
W′ = F W̃′.

This statement can be generalised to an arbitrary
expression E ∈ E, giving [[E]]W̃→W̃′ = ‖E‖W→W′ with
W = F W̃, and upon evaluation W′ = F W̃′.

Most of the systems used in practical applications
are normal. They include, in particular, systems based
only on one type of interoperability, and fully polymor-
phic systems (in which no direct references to remote
slots are made, and the only type of remote referencing
is inheritance).

Since semantics of both mobile and static reference
evaluations correspond to equivalence semantics, we
can also conclude that mobile and static interopera-
bility in distributed frame hierarchy are equivalent in
terms of results obtained upon evaluation:

Corollary 2.

[[♦Wi(f, s)]]W̃1→W̃′
1

= [[�Wi(f, s)]]W̃2→W̃′
2

where F W̃1 = F W̃2, and upon evaluation F W̃′1 =
F W̃′2.

4.5 Taking Network Failures into Account

Network interoperability in real systems is not failure-
proof, which in some cases prevents remote calls or
data transfers from functioning properly. If we want
to account for such problems in the formal semantics,
we can, as it is done in [11], use oracle functions in
equations (2) and (3). It has to be noted that in this
case the result of any evaluation that involves remote
references becomes non-deterministic, thus making it
difficult to formulate precise results about defined se-
mantics.

5 Conclusion

In this paper we have described semantics of logical
inference in production-frame systems, and then ex-
tended it to define the semantics of distributed in-
ference in the model of distributed frame hierarchy.
Extended semantics takes into account two modes of
interoperability in distributed frame system (invoca-
tion and inclusion), and happens to be equivalent
to natural semantics, where distributed hirarchy is
viewed as a non-distributed one. Defined semantics
allows us to state the equivalence of invocation and
inclusion-based approaches to distributed inference in
normal systems, and defines the behaviour of software
implementations [1, 2].

References

[1] Soshnikov D. Software Toolkit for Buiding Embedded
and Distributed Knowledge-Based Systems. In Proceed-
ings of the 2nd International Workshop on Computer
Science and Information Technologies, Vol.1, USATU
Publishing, Ufa, 2000. pp. 103–111.

[2] Soshnikov D. JULIA Toolkit for Creating Distributed
Intelligent Systems based on Production-Frame Know-
ledge Representation. Electronic Journal “Trudi Mai”,
N 7, 2002. (In Russian) http://www.mai.ru/mai works

[3] Booch G. Object-Oriented Analysis and Design with
Applications. Addison-Wesley Publishing Company,
1994.

[4] Gavrilova T.A., Khoroshevsky V.F. Knowledgebases
and Intelligent Systems. Piter Publishing House, 2000.
(In Russian)

[5] Donahue J.E. Complementary Definitions of Program-
ming Language Semantics, Lecture Notes in Computer
Science, 42, 1976.

[6] Hyacinth S. Nwana, Software Agents: An Overview,
Knowledge Engineering Review, Vol. 11, No.3, 1996.
pp. 1–40.

[7] Gruber T. R., A Translation Approach to Portable
Ontology Specifications. Knowledge Acquisition, 5(2),
1993. – pp. 199-220.

[8] Wolfengagen V.E. Constructions of Programming Lan-
guages. Methods of Description. Moscow, JurInfoR
Publishing, 2001.

[9] Wooldridge M. A Knowledge-Theoretic Approach to
Distributed Problem Solving. Proceedings of the 13th

European Conference on Artificial Intelligence. John
Wiley, August 1998.

[10] Lesser, V.R. An Overview of DAI: Viewing Distribu-
ted AI as Distributed Search, Journal of Japanese So-
ciety for Artificial Intelligence, Vol. 5, No. 4, 1990.

[11] Seng Wai Loke, Adding Logic Programming Be-
haviour to the World Wide Web, PhD Thesis, De-
partment of Computer Science, The University of Mel-
bourne, Australia, 1998.

Interoperability Semantics in Distributed Frame Hierarchy


