
Ontological Design Patterns for

Distributed Frame Hierarchy

Dmitri Soshnikov

Department of Numerical Mathematics and Programming
Moscow Aviation Institute (State Technical University)

Volokolamskoye shosse, 4
Moscow, Russia

dmitri@soshnikov.com

Abstract

With a very important role played by ontolo-
gies in many aspects of modern IT, the issues
of ontology engineering deserve special atten-
tion. One of effective representation architec-
tures for ontologies with dynamic knowledge
in distributed environments is distributed
frame hierarchy [1]. In this paper we present
typical ontological design patterns that ap-
pear in connection to that architecture. Those
patterns describe knowledge distribution con-
figurations that can be effectively represented
by supported interoperability, and thus en-
compass the range of problems that can be
effectively solved in the given framework.

1. Introduction

In the recent years we witness the growing tendency
towards interoperability of different devices and plat-
forms in the distributed environment, supported by
the expanding infrastructure of global networks. In
the field of AI, this interoperability is governed by the
notion of ontology [2] as a mechanism to ensure coher-
ent use of concepts in distributed knowledge-sharing
environment. Ontologies therefore play a major role in
the design of contemporary knowledge-based systems,
because they provide initial (partly standardized)

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the CSIT copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Institute for
Contemporary Education JMSUICE. To copy otherwise, or to
republish, requires a fee and/or special permission from the
JMSUICE.

Proceedings of the 5th International Workshop on
Computer Science and Information Technologies
CSIT’2003
Ufa, Russia, 2003

conceptualization upon which the additional domain
knowledge can be structured [3]. The importance of
knowledge-based technologies in structuring the global
information space is further realized in the concept of
Semantic Web [4] — the set of W3C standards for the
new generation semantically rich ontology-based re-
source markup that will make the Web understandable
not only by humans, but also by software agents.

As we feel the need for creating large-scale repositories
of knowledge, the issue of ontology design becomes
more and more important. Lately, there is a tendency
in both theoretical research [3] and in practical appli-
cations [5] to apply methods of traditional software
design to ontology engineering, and in particular
the notion of design patterns [6]. [3] shows similari-
ties between traditional software design patterns and
ontologies, while [5] introduces the notion of ontology
design patterns with respect to designing ontology for
a particular problem domain in Biology.

In this paper, we introduce the notion of ontology
design patterns more broadly, and discuss a number
of patterns targeted towards distributed knowledge
sharing and reuse supported by the model of dis-
tributed frame hierarchy [1]. Those design patterns
outline distribution configurations that are effectively
supported by two types of interoperability provided,
and thus they encompass the range of problems that
can be effectively solved using proposed model. From
this point of view design patterns augment the formal
semantics presented in [7], which formally defines the
range of possibly represented reasoning methods, by
focusing on best practices that are used in real-life
applications.

2. Distributed Frame Hierarchy Model

In the area of distributed reasoning and multi-agent
systems there have been a lot of research on communi-
cation between intelligent systems, and standards have
been developed (KQML, KIF, OKBC). However, in
all the approaches agents have some internal reasoning

Workshop on Computer Science and Information Technologies CSIT’2003, Ufa, Russia, 2003



Figure 1 Distributed Frame Hierarchy
mechanism and knowledge representation (which may
be obtained by translation from the common ontol-
ogy for multi-agent system), and they use some other
knowledge representation for external communications.

While in many cases this seems like a very flexible
solution, there are certain problems for which it seems
to be too general and less efficient. In particular, we
consider problems of distributed knowledge sharing and
reuse for small and middle-scale applications, where
we want to create a distributed knowledge repository
and use it for performing reasoning over wide range of
devices and platforms (for example, mobile terminals
such as PDAa and cellular phones). For such sys-
tems we generally need lightweight implementation,
and cannot afford overhead from translation between
internal knowledge representation and external mes-
saging protocol. In addition, we need lightweight
and straightforward interoperability mechanisms that
would consider network traffic minimization and work
over existing protocols such as HTTP or IIOP/SOAP.

Thus, one of the goals is to unify knowledge repre-
sentation throughout all nodes of the system, and
also in inter-node communication. Since ontologies
are normally organized as hierarchies of concepts with
their properties in the form of declarative knowledge,
we should look for knowledge representation that is
structurally similar.

In fact, frame knowledge representation from classical
AI is very much suited for this purpose, and it can be
augmented by production rules for defining properties
and statements about concepts (production-frame
knowledge representation) [8]. As demonstrated
in [1], this representation can be effectively distributed
over computer network by placing different parts of
the hierarchy on different nodes (Fig.1).

Each sub-hierarchy in such a model can be viewed as
an independent hierarchy with the same knowledge
representation and inference algorithms, having some
external links to other hierarchies that we call remote

references, i.e. references to frames and slots located
in different subhierarchies. There are two types of
remote references — static and mobile — that
correspond to two types of interoperability: remote
invocation and inclusion. Remote references are
typically used in two contexts: in the parent slot
for remote inheritance, or in any other context for
remote aggregation.

The model of distributed frame hierarchy also provides
seamless integration with relational databases and
imperative software components (such as COM and
CORBA-objects, JavaBeans, etc.). In the latter case
the software object is exposed as a frame according
to some naming convention, and relational table is
represented by a series of pseudo-frames that reflect
the data in the database.

In this chapter, only the most fundamental concepts
of distributed frame hierarchy have been outlined.
Other related publications (for example, [1]) provide
more complete discussion of the subject, including such
distinct features as on-demand mobile referencing,
constraints, constraint-based and rule-based dynamic
inheritance, etc.

Distributed hierarchy with inheritance that spans net-
work node boundaries (remote inheritance) provides
an effective framework for representing distributed on-
tologies augmented by dynamic knowledge from the
problem domain in terms of production rules. Un-
like the translation approach to ontologies [9], where
ontological knowledge gets translated to the implemen-
tation language before it is used for logical reasoning,
in distributed frame hierarchy the knowledge represen-
tation is auto-ontological, i.e. new pieces of knowledge
get integrated into distributed ontology repository and
are being available for immediate inference. However,
the strict architecture of distributed frame hierarchy
is more restrictive than generic multi-agent approach,
thus it has some limitations and is most effective when
utilised for a certain category of tasks that we refer
to as distributed knowledge sharing and reuse.
To outline the spectrum of possible applications more
precisely and to highlight the best-use practices we
define typical ontology design patterns.

3. Ontology Design Patterns for Dis-
tributed Frame Hierarchy

An architecture of distributed frame hierarchy pre-
sented above is not intended to be a general re-
placement for ontology design tools and approaches.
Rather, it can provide more straightforward and
lightweight solution to a series of typical problems
of distributed knowledge sharing and reuse. Those
problems are characterised by certain distribution
of knowledge along different network nodes and the
way this knowledge can be mapped to distributed
production-frame knowledge representation.

Ontological Design Patterns for Distributed Frame Hierarchy



By ontological design pattern we mean, adopting
the definition from [6], a typical ontology configuration
or knowledge distribution pattern that corresponds to
effective and elegant solution of a certain problem.
We present several knowledge distribution patterns
that can be effectively represented using distributed
frame hierarchy mechanisms. Where appropriate, an
example of the design pattern is given, related to the
medical problem domain.

Design patterns can be considered from two different
viewpoints. First, they show which typical knowledge
distribution scenarios can be effectively represented
by distributed frame hierarchy, and how this can be
done. They can also provide some recommendations
on whether static or mobile inheritance/aggregation
should be used. Secondly, if we provide fully com-
prehensive list of design patterns, we can argue that
only their combinations can be represented effectively,
thus defining more formally the range of application
effectively handled by the proposed approach. While
classification of patterns presented below is only the
first attempt, and cannot be guaranteed to be compre-
hensive, we believe that the approach of characterising
potential uses of distributed frame systems by corre-
sponding ontological patterns is very constructive and
convenient.

3.1. Notation

Fig.2 and 3 show schematic representation of the design
patterns being discussed. On the pictures, circles
correspond to frame subhierarchies, where filled circle
denotes hierarchy with significant amount of knowledge
included, while empty circle typically corresponds to
simple hierarchy consisting of one or few frames with
no production rules. Letters inside circles refer to
problem domains (or subdomains) that knowledgebase
is intended to. Arrows denote inheritance, aggregation
(remote referencing) and other types of relationships
according to the legend provided.

3.2. Inheritance Patterns

Most fundamental method for knowledge sharing in the
distributed frame hierarchy is inheritance, which allows
to apply knowledge stored in one subhierarchy to the
remote problem data, to combine knowledge from two
hierarchies, and to extend and augment knowledge
contained in one hierarchy by rule sets located on
different nodes. Still, usage of remote inheritance
differs according to the exact purpose, which creates
several inheritance-related design patterns outlined
below.

3.2.1. Remote Consultation

Simplest form of inheritance is remote consultation
(Fig.2A), where all knowledge is contained in the
parent hierarchy, and a frame containing no rules

is remotely inherited from it. By querying slots
of this frame knowledge contained in the remote
hierarchy is propagated through the network and
applied, frame slots being filled by values derived in
the process of inference. Depending on whether static
of mobile inheritance is used, either slot values (static
knowledge) are passed between network nodes in the
form of remote calls, or the actual rules (dynamic
knowledge) are exchanged. Former corresponds in a
way to thin client application model, while the latter
— to thick client1.

A special feature to optimize network traffic in the
remote consultation is on-demand rule loading,
which is similar to mobile inheritance, but involves
transferring only those dynamic rules that are actually
needed during the consultation.

As an example, remote consultation can be used by a
distant hospital to access central knowledgebase in the
larger medical institution to perform a consultation, or
by a doctor through his MIDP-enabled cellular phone.

3.2.2. Knowledge Reuse and Extension

In remote consultation, frame that extends parent
hierarchy is used mainly for storing values (attributes)
describing the problem being solved. However, in
general it can also extend dynamic knowledge of
the parent hierarchy with its own production rules,
which may modify original knowledge to make it more
accurate or suitable for solving particular problem. For
instance, some specific cases may be identified, and
for resolving all other cases knowledge from parent
hierarchy can be used. This is the simplest form
of knowledge reuse, when production rules from the
parent hierarchy are used, but some functionality
is extended (Fig.2B). This extension of the remote
hierarchy need not necessarily be directly used for
consultation, but it can also provide knowledge for
further subclassing and reuse.

Considering the example above, a doctor in the distant
hospital can extend the central knowledgebase with
his own rules to reflect his experience. However, when
the central knowledgebase is altered, this alteration
would also be immediately available for the client.

Using static of mobile inheritance for knowledge reuse
can be chosen depending on the specifics of the prob-
lem. A combination also could be used: for example,
we can consider the doctor consulting central hospital
server from a mobile phone using remote call, while the
hospital server would inherit the basic knowledge from
the variety of sources on the internet using inclusion.

1This terminology is not strictly correct, since in all cases
software supporting operation of distributed frame hierarchy has
to be installed on all nodes. Thin and thick clients in this case
refer to where the inference takes place, and where the most of
the knowledgebase (its dynamic part) is located.

Workshop on Computer Science and Information Technologies CSIT’2003, Ufa, Russia, 2003



Figure 2 Ontological Design Patterns for
Inheritance

3.2.3. Abstraction and Specialization

More common way of structuring knowledge in an
ontology is abstraction, when some concepts are
identified according to their base properties, and then
they are extended to the number of more specific
concepts, forming branch of the inheritance tree.
Distributed frame hierarchy provides means for storing
distributed ontological knowledge about concepts, and
abstraction as a design pattern (see Fig.2C) plays here
the same fundamental role.

Consider a central knowledgebase of a large hospital. It
can be structured as an upper level ontology specifying
such fundamental concepts as patient, department,
treatment, etc., as well as some general diagnosing
rules. Then, different departmental servers can extend
this knowledge and adopt it to the specific problem
subdomains.

3.2.4. Dynamic Inheritance / Subsumption
for Problem Identification

One of the reasoning mechanisms in frame system is
subsumption, when a concept is identified as be-
longing to a particular class. In the distributed frame
hierarchy, one of the mechanisms of subsumption is
dynamic inheritance, when a parent of a certain frame
is determined either according to slot constraints, or
by explicit production rules. This mechanism can also
be identified as a design pattern (Fig.2D), when a sep-
arate frame is created, filled with initial data, and the
process of subsumption inference is started to identify
its parent. Identifying the parent of a frame in itself
solves the problem of identification of the base class.

In the medical domain, we can have separate subhier-
archies corresponding to different areas of medicine.
Then, when a new patient is encountered, it can be
classified to the correct subdomain by establishing
inheritance link, after which deductive inference can
take place to determine the exact diagnosis according
to the given medical area.

Figure 3 Ontological Design Patterns for Coop-
erative Problem Solving
3.2.5. Sequential Inheritance/Suitability Test

A process similar to dynamic inheritance is sequential
(or pseudo-multiple) inheritance, when a frame is
inherited from one parent at any given time, but then
according to some meta-rules the parent is changed,
making new knowledge available for application.

Sequential inheritance can be used for many purposes,
for instance for filtering parent concepts according
to a certain condition (suitability test), or as an
alternative for dynamic inheritance. As an example of
suitability test consider an expert system for choosing
different domestic appliances from different vendors
according to some criteria contained in master frame.
Then, master frame can be sequentially inherited
from the knowledgebases of different providers, which
would determine whether their models are suitable for
criteria, and suggest most appropriate model. After
inheriting from all vendors in turn we would end up
with a list of most suitable appliances.

3.2.6. Blackboard and Multiple Inheritance

Well-known from classical AI Blackboard architecture
[10] can also be implemented via remote inheritance.
The main idea of blackboard architecture is to have a
common place for storing assertions about the problem
being solved, which is accessible by a number of expert
systems working cooperatively. In terms of distributed
frame hierarchy one of the ways to achieve this is by
multiple inheritance (Fig.2F-1) — however, in this
case the knowledge from all parent subhierarchies
would be applied in turn for solving the problem,
and not cooperatively. Another possibility is remotely
referencing the blackboard frame from several other
subhierarchies (Fig.2F-2) — in this case slots of the
blackboard frame can be cooperatively modified by
asynchronous inference that takes place on the remote
hierarchies.

Ontological Design Patterns for Distributed Frame Hierarchy



3.3. Cooperative Problem Solving Patterns

Apart from inheritance, distributed frame hierarchy
allows using remote references for any other purposes.
This is mostly useful when there are different remote
knowledgebases, and we want to use them in turn (or
concurrently) to obtain the set of solutions to the same
problem. This is typically referred to as cooperative
problem solving, and has a number of associated
design patterns.

3.3.1. Cooperative Problem Solving for One
Problem Domain

Suppose there are different knowledgebases maintained
distributedly by two specialists in the same problem
domain. If they were developed using the same upper
ontology, the attributes and naming conventions are
likely to be the same. It makes sense to solve the
problem using two knowledgebases on the same set of
initial attributes, and then to compare the results. We
refer to this pattern as cooperative problem solving
for one problem domain (Fig.3A).

To perform such solution in distributed frame hierar-
chy, we need to create two identical low-level frames
filled with initial data, which would also hold all inter-
mediate reasoning results. This is achieved using the
specific frame splitter component. When the infer-
ence is complete, results should be somehow combined,
or the best solution selected according to some criteria.
This is done by frame unifier, which can either be
a specific component or normal frame referencing all
solution frames, which determines the overall solution
by some further inference.

3.3.2. Multi-Domain Problem Investigation

Another, in a way orthogonal, pattern of cooperative
problem solving arises when problem domains are
distinct. An example of this can be two different
areas of medicine, and an attempt to diagnose certain
set of symptoms from two different viewpoints. This
can be accomplished by a pattern similar to previous
one, only where problem subdomains of the parent
subhierarchies are different (Fig.3B-1).

However, for different problem domains most domain-
specific attributes are also likely to be distinct, or
at least it is always possible to design an ontology
with this goal in mind. In this case the correspond-
ing pattern can be simpler (Fig.3B-2), and problem
solution in multiple domains can be achieved just by
(pseudo)-multiple inheritance.

3.3.3. Sequential Referencing

Two previous patterns of cooperative problem solving
were designed to infer problem solutions indepen-
dently, operating on separate base frames. However,
sometimes we need to apply knowledge from several
knowledgebases in turn to the solution of one problem,

much in the same manner as in Blackboard archi-
tecture. However, while in Blackboard architecture
inference may be asynchronous, here we want somehow
to control the order of knowledge application.

In sequential referencing, we dedicate one frame as
a base frame (or blackboard frame), and pass its
reference along the series of frame subhierarchies re-
sponsible for maintaining actual knowledge. Those
hierarchies would then modify some slots in the black-
board frame, thus making some steps towards the
required solution, and then pass the reference to an-
other subhierarchy to continue inference. It case static
reference is passed — the actual blackboard frame
resides on some active server, and blackboard values
are read or assigned to via remote calls. For mobile
references the actual contents of blackboard frame is
passed from one network node to another, thus re-
sembling the mobile agent approach, when the whole
problem state is transferred over the network.

One of the practical applications of this approach is
dynamic real-time search in the family of ontological
knowledge-based active resource descriptions [11]. The
idea behind it is to perform search in the family of
resources annotated by knowledge-bases with com-
mon ontology by utilising an adopted graph search
algorithm. The problem state in this case would be
a queue of resources that have to be consulted and
the result set, and by passing it from one node to
another it would be enriched by further resources that
are suggested by different knowledge-bases formed by
intelligent resource descriptions.

3.4. Miscellaneous Patterns

3.4.1. Database Access

As it has been outlined above, a table or view in the
relational database corresponds to a family of pseudo-
frames, which typically reflects one of the following
two design patterns:

• In Frame-class inheritance (Fig.3D-1) all frames
in the family are inherited from a common parent
that provides actual knowledge to be applied to the
underlying data. This pattern is useful for filling
in some fields in the table with reasoning results,
or for querying certain inferred attributes of the
underlying datasets.

• Frame-class aggregation (Fig.3D-2), when ref-
erences to all pseudo-frames are used in some other
manner, for example in the list-typed slot of a
certain frame. This list can then be traversed dur-
ing reasoning (using MAP operation), and results
used elsewhere. This pattern is useful for filtering
records according to certain criteria, or for com-
puting some complex aggregate functions as the
result of reasoning (eg., how many patients with
coronary diseases are in a hospital – where a state

Workshop on Computer Science and Information Technologies CSIT’2003, Ufa, Russia, 2003



Figure 4 Combination of Design Patterns
of coronary disease is determined by reasoning
according to the knowledgebase).

3.5. Imperative Components

Finally, we consider inclusion of imperative compo-
nents in the form of pseudo-frames to be a design
pattern as shown on Fig.3E.

3.6. Complex Example

The main idea behind ontological design patterns is
that they can be combined to form more complex
ontology architectures that can still be effectively im-
plemented using distributed frame hierarchy. This idea
is demonstrated on Fig.4, showing complex ontology
architecture in the medical domain [12].

Taking a closer look at the picture one notices that it
consists of individual design patterns that were given
as an examples in the sections above. It includes
remote inheritance for consultation (A), for knowl-
edge abstraction (B), cooperative problem solving in
one domain (C), and in orthogonal domains (D,E),
combining knowledge from different sources (F), as
well as database access (G). The diagram shown on
Fig.4 can be considered as a graphical tool to model
ontological interoperability within large distributed
knowledge-based system; it can then be decomposed
into more primitive design patterns, for which inter-
operability methods have been briefly outlined below.
Thus. ontological design patterns can be considered
as a graphical tool for designing ontologies based
on distributed frame hierarchy suited for practical
applications.

4. Conclusion

In this paper we have discussed the relation between
ontology design and the architecture of distributed
frame hierarchy, and have demonstrated that for prob-
lems of knowledge sharing and reuse distributed frame
hierarchy can be used as a direct representation of
domain ontologies. More formally, the domain of ef-
fectively handled problems have been characterized by
a number of ontological design patterns, which, under
all possible compositions, encompass the architectures
of all effectively represented ontologies.

We believe that the approach of defining descriptive
power of ontological design by design patterns is worth
further investigation and formalization, because it pro-
vides constructive way to outline the set of all problems
that can be effectively solved by a given underlying ar-
chitecture. While strict semantic approach [7] defines
the set of problems that can be solved, design patterns
outline effectively representable structural and proce-
dural knowledge configurations in terms of clarity and
simplicity. Thus two presented approaches compliment
each other, and contribute to the complete description
of the given knowledge representation formalism.

References

1. Soshnikov D. An Architecture of Distributed
Frame Hierarchy for Knowledge Sharing and Reuse
in Computer Networks. In Proc. of the 2002 IEEE
Intl. Conf. on AI Systems, IEEE Computer Soci-
ety Press, 2002. – pp. 115-119.

2. Fikes R., Farquhar A. Distributed Repositiories
of Highly Expressive Reusable Ontologies.IEEE
Intelligent Systems, 3/4, 1999. pp. 73–79.

3. Devedžić V. Understanding Ontological Engineer-
ing, Communications of the ACM, Volume 45,
No.4, April 2002, pp. 136-144.

4. Berners-Lee T., Hendler J., Lassila O. The Seman-
tic Web. Scientific American, May 2001.

5. Reich J.R. Ontological Design Patterns for the
Integration of Molecular Biological Information.
In Proc. of GCB-99 Conf. on Bioinformatics,
Hannover, Germany, 1999.

6. Gamma E., Helm R., Johnson R. and Vlissides J.
Design Patterns - Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1994.

7. Soshnikov D. Interoperability Semantics in Dis-
tributed Frame Hierarchy. In Proc. of 4th CSIT
Workshop, Patras, Greece, 2002.

8. Karp P.D. The Design Space of Frame Knowledge
Representation Systems. SRI AI Center Technical
Note #520, 1993.

9. Gruber T. R., A Translation Approach to Portable
Ontology Specifications. Knowledge Acquisition,
5(2), 1993. – pp. 199-220.

10. Pfleger K., Hayes-Roth B., An Introduction to
Blackboard-Style Systems Organization, KSL
Tech. Report KSL-98-03, Stanford Univ., 1997.

11. Soshnikov D., Krasteleva I. ROMEO: An
Ontology-Based Multi-Agent Architecture for On-
line Information Retrieval. In Proc. of OntoBIS
2003 Conf., Colorado Springs, USA, 2003.

12. Lukianov I., Zavedeev I., Soshnikov D. Expert
Ananysis in Chosing Medical Treatment Tactics
for Patients with Infravesical Obstruction. In Col.
Abstr. of 3rd Conf. “Oncology Disease Treatment
in Urology”, Oncology Scientific Center, Moscow,
1999. — pp. 131–132. (In Russian)

Ontological Design Patterns for Distributed Frame Hierarchy


