An Approach for Creating Distributed Intelligent Systems

Dmitri Soshnikov
Department of Numerical Mathematics and Programming,
Moscow Aviation Institute (Technical University)
Moscow, Russia
shwars@usa.net

Abstract
The paper presents an architecture of a distributed
expert system for knowledge sharing across the
network, which differs from traditional autonomous
agents approach by separating knowledgebase and
inference into different components possibly located
on different network hosts. By combining inference
engine and knowledge provider components in
different ways it is possible to combine knowledge
on rule-level (on the level of domain knowledge) or
on the level of problem state representation. It also
allows us to apply several inference strategies to one
set of rules, or perform combined inference by using
several inference engines in turn.
The article describes domain knowledge and
problem state representation most suitable for
remote inference, as well as some technical aspects
of implementation of such a system using CORBA
as remote computation paradigm. Some examples
demonstrating possible real-life usages of the remote
inference are given.

1. Introduction

Nowadays we observe growing popularity of global
computer networks in almost any area of human activity.
Internet is now used not only to provide efficient way of
transferring data between sites, but also as a huge
information source: a global information highway.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the CSIT copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Institute for Contemporary Education JMSUICE. To
copy otherwise, or to republish, requires a fee and/or special permission
from the JMSUICE.

Proceedings of the Workshop on Computer Science and
Information Technologies CSIT’99
Moscow, Russia, 1999

Moreover, since all computers in the Internet can
seamlessly exchange information over any physical
distance, all sorts of complex information systems can be
built with different parts of the system running on
different computers within the network. Such systems,
called distributed systems, can, for example, provide a
framework for virtual corporation (a corporation with
subdivisions located worldwide, which are tightly
integrated to accomplish common tasks), or support
complex search and retrieval system over distributed
information storage.

A simple distributed system can be based on exchange of
certain data between sites, while more complex one can
consist of interoperating components called agents. An
agent is typically an independent software component that
is considered with respect to its environment, and which
performs a certain task by observing the environment and
performing actions [1]. For example, an agent might
regularly check specified web sites and notify you when
changes occur, or automatically reply to your mail. By
combining agents and making them interoperate
cooperatively one can achieve more complex task.

There are cases when certain degree of intelligence is
required in the agent's behaviour. Such agents are called
"intelligent agents", and usually implement some sort of
Al techniques. As an example of such agent consider
"consulting agent" which can give you the consultation on
certain problem given some initial information. Such an
agent would have an encapsulated knowledgebase and
inference strategy, i.e. implement an expert system with
remote interface.

Now suppose we have multiple consulting agents, and we
want to combine them to achieve more detailed and broad
consultation. In this case the information about the
problem (so-called problem state) will travel from one
agent to another, and each agent will consider the problem
and add the additional information it infers. In this case,
however, each agent should "understand" problem

Workshop on Computer Science and Information Technologies CSIT 99, Moscow, Russia, 1999

description in the same way, i.e. there should be
consistency in knowledge representation and terminology
in the agents' design.

In this scheme each agent has its own inference strategy
and the set of rules in the knowledgebase. We can add
more flexibility (and more complexity as well) by not
imposing an autonomy restriction, i.e. by separating
knowledgebase and inference. In this architecture,
inference engines and knowledgebases (knowledge
sources) are separate entities, and can be located on
different network nodes. While this would still allow
traditional agent-based approach (by running inference
engine and a knowledge source on the same machine), it
would also make possible to apply several different
inference strategies to the same rule set, or combine
different rule sets to be used in one inference process, thus
creating more complex structures for knowledge sharing.
As we will see later in this article there are cases where
this type of architecture can be well applied.

2. Some Approaches to Knowledge Sharing
over Computer Networks

Ususual facilities provided by computer networks include
several means of transferring data between computers and
therefore sharing information on the network. One of the
best examples of information sharing is Internet and the
World Wide Web, where huge information resource is
made available, organized as a network of linked pages.

However, to share knowledge in a similar manner we
need to provide certain means to interpret data as a source
of knowledge. A simple approach that is used in many
expert system shells capable of remote consultation is to
select certain knowledge representation for domain
knowledge, and then transfer the knowledgebase in this
representation across the network. Once the domain
knowledge has been transferred, the system uses its local
copy of a knowledgebase to perform inference locally on
a client machine. This approach corresponds to thick-
client model, and in TCP/IP networks is usually
implemented as a Java applet, which downloads the
knowledgebase from the server using standard TCP/IP
transfer mechanisms (HTTP, Sockets, etc.) As an example
of such a system we can name JESS (Java Expert Systems
Shell, [2]), which implements a subset of CLIPS [4] (see
Fig.1).

HTTP
Knowledge HTTP Inference
base Engine
Www Web browser
Server

An Approach for Creating Distributed Intelligent Systems

Figure 1 Implementing remote consultation in thick-
client model

This model has several disadvantages. First, the
representation of domain knowledge is rather large, and
transferring it across the network consumes time and
network bandwidth. The amount of data that needs to be
transferred can be partially reduced by using knowledge
representation and inference techniques, which would
allow only the rules needed by the inference chain to be
actually sent over the network. Another disadvantage is
that domain knowledge represents certain intellectual
property, and it might be undesirable that it is freely
available to clients. This could be avoided by using
certain cryptography techniques. At last, the inference is
performed on client computer, which requires additional
computational resources.

An opposite approach is to transfer not the domain
knowledge, but the problem state. In this case the initial
information about the problem is represented in some
way, and then transferred to the server which performs the
inference, and returns the new problem state to the caller
(refer to Fig.2). This can be achieved by using remote call
interface ([3] describes BOW expert systems shell with
remote interface, developed at Moscow Aviation
Technical University), or through web-based access by
calling any traditional expert systems shell (e.g. CLIPS) as
CGTI application. This approach is very close to the
traditional agent architecture, and expert system with a
remote interface can be regarded as an agent.

WWW server HTTP @ HTIS Web-browser
% N

Expert Systems Shell
(Knowledgebase+
inference engine)

Figure 2 Implementing remote consultation in thin-
client model

In both cases knowledge is concentrated in one
knowledgebase and then is somehow transmitted between
computers. In more complex case, when we want to have
several knowledge sources and share knowledge between
them (i.e. use the knowledge from all sources in one
consultation), we need more complex architecture. As it
was mentioned earlier, one way to construct such
architecture is to combine agents. This would allow us to
integrate knowledge on semantic level, i.e. agents would
exchange only problem state representation and not the
domain knowledge itself. However, it might be also
reasonable to integrate domain knowledge from separate
knowledgebases and use it in one inference process. This
leads us to the architecture with distributed
knowledgebase and inference.

3. Distributed Knowledgebase-Inference
Architecture

In the traditional autonomous agent architecture the
complex system is constructed from the atomic agents
which can, even working individually, carry out a specific
task. In the presented approach the system consists of
"subatomic" parts called components, and several
components are required to achieve an intelligent
behaviour. This group of components can be regarded as
an agent, and such groups can be further combined.

Most important components are inference engines and
knowledge providers. Inference engine is the main
reasoning component, which, given the initial data about
the problem in the form of so-called problem state,
performs the logical inference process using the
knowledge from one or more knowledge providers,
adding new inferred data into problem state. The
inference engine can, in the process of inference of
afterwards, pass the problem state to another inference
engine, which uses its own or the same knowledge
provider. If some more information about the problem is
needed in the process of inference, the requests can be
made back to the user (or to the calling program). The
general structure of the distributed intelligent system is
shown on Fig.3.

User Probem State/ | Natural Language
Interface (€| constraint checker g Processor

Shell
Rule Provider

API t
Library
Inference Engine

\—*7

Program ||

Plugins

Figure 3 Basic components of distributed
knowledgebase-inference model

There are two types of knowledge that need to be
represented in the system: domain knowledge and
knowledge about the specific problem we need to reason
about. Domain knowledge is formed of a general notion of
an expert about problem domain, and is independent of a
problem being considered. A representation of domain
knowledge forms knowledgebase.

Knowledge about specific problem represents the facts
that are currently known. We call the set of facts about the
problem in a particular moment a problem state. Domain
knowledge allows us to infer new facts and add them to
the problem state, thus moving to another possible
problem state. Thus the inference engine actually

performs a search in a set of problem states.

Inference engines may implement different inference
strategies, however, to achieve interoperability between
all system components, they should all use the same
knowledge representation scheme. More precisely, if
different knowledge representation schemes are used, only
the components with the same representation can be
combined to form a reasoning agent. The agents
themselves do not exchange domain knowledge but only
the problem state, and therefore need to share only the
common representation of problem state and not of the
domain knowledge.

There could be different levels of abstraction applied to
the knowledge representation used to exchange domain
knowledge. A good approach would be using standard
knowledge exchange language like KQML, which would
allow to integrate other KQML-compliant agents into the
system. However, one needs to keep in mind that the
efficiency of the inference process would depend on the
speed the domain knowledge can be transferred to the
inference engine. Particularly, it would be useful to have
such a representation, where only the part of domain
knowledge, relevant to the current inference chain, is
obtained from the knowledge provider. The problem state
should also be represented in a compact way, since it
would be used by different inference engines.

In this respect our approach uses production rules as
domain knowledge representation, and attribute-value
pairs to represent problem state. Production rules are
simple statements of the form

IF <condition>

{ AND | OR <condition> }

THEN <statement>

for example
IF temperature > 50 AND smoke

THEN house on fire

This rule, given the evidence that temperature is rather
high and there is smoke, will infer the evidence that there
is a fire. The evidence itself constitutes problem state, and
is represented as a set of variables (called attributes)
having certain values. In this example temperature may
hold the value of the current temperature, and smoke can
be true or false depending on whether there is smoke or
not.

There are two basic types of inference used in production
expert systems: so-called forward chaining (data-driven)
inference and backward chaining (goal-driven). In the
first case, the system considers the initial data and tries to
find rules that can be applied (i.e. the ones which
conditions are satisfied by the values in the problem

Workshop on Computer Science and Information Technologies CSIT 99, Moscow, Russia, 1999

state). If a rule is applicable, it adds additional evidence to
the problem state. Backward inference, on the contrary,
given the goal (the variable whose value is to be found)
tries to find the rules which can assign a value to the
variable. Then it considers the variables that are needed to
satisfy that rule, and tries to find the values of these
variables in the same manner. Frequently, in backward
chaining inference, if a value of certain variable cannot be
determined, the corresponding request is made to the user.
For example, starting with no initial data, the backward
inferring system can ask for all the data it needs to find the
answer by itself. More information on knowledge
representation and inference can be found, for example, in
[14].

One important thing concerning backward inference is
that during each step it needs to consider only the rules
applicable to find the value of one variable (the current
goal), and not the whole knowledgebase. Moreover, if the
first such rule can satisfy the goal, no further rules need to
be considered. This makes backward chaining perfect to
be used in our distributed system, because only few rules
that are needed to the inference chain are obtained by the
inference engine, while most of the rules in the
knowledgebase, irrelevant to the concrete situation, do not
need to be transferred.

In some cases it is desirable that forward inference be
used. Not to impair the performance, the forward
inference engine should be located on the host which has
fast network connection to the knowledgebase (or on the
same host), because forward inference generally requires
all rules to be considered for execution. If the combined
inference strategy is to be applied (i.e. after each step of
backward inference the forward inference is applied to
check if the new facts can be derived), then two inference
engines can be located on different hosts, and
interoperate. In this case they would both use the same
knowledge provider and access the same problem state,
and only small portion of the information about additions
to the problem state needs to be exchanged between
remote hosts.

For different inference engines to operate on the same
problem state, the latter is implemented as a separate
component which keeps a set of attribute-value pairs and
can handle requests to add new pairs. It can also perform
some more complex tasks, for example, implement
constraint checks, disallowing some values to be
assigned to the variables. This can be very useful, for
example, in medical diagnostic program, when it is known
from the evidence that certain diagnosis is incorrect, and
we want to check other possibilities. Traditional backward
inference architectures do not allow backtracking, i.c.
facts that have already been inferred cannot be removed
from the problem space. Implementing the constraint
would prevent the undesired diagnosis from appearing in

An Approach for Creating Distributed Intelligent Systems

the problem state at all, and would therefore lead the
inference towards different solution.

Making problem state an additional component allows
even more complex inference strategy, when more then
one inference engine is used to obtain the result. In this
case certain rules in the knowledgebase contain references
to other inference engines, and, when such rules are
executed, the process of inference passes over to another
engine. New engine operates on the same problem state,
and, when some information is required from the user,
directs all questions to the original component that started
the consultation.

Apart from the core components the architecture allows
easy integration of additional components which share the
same knowledge representation and carry out problem-
specific tasks. Among such components there may be a
natural language processor (to extract facts from natural
text or to provide natural-language interface with the user
during consultation), DBMS interfaces for getting data out
of relational databases, web spiders for extracting
information from web pages and more. In the following
part we discuss some aspects of implementation of such
components.

4. Some words about implementation

While it is always possible to program a distributed
system from scratch, there are some traditional methods
(we can also say protocols or tools) which facilitate this
task. Among them:

e RPC (Remote Procedure Call), which is the oldest
protocol introduced in UNIX systems, which allows
one process (client) to call a procedure in a remote
process (server). RPC hides the implementation
details of transferring parameters between machines,
and presents the remote procedure to the programmer
as though it is a remote procedure.

e RMI (Remote Method Invocation) introduced in Java
versions 1.1 and above, which works like RPC, but
exposes remote object with several methods to the
client program. In a sense it is the object-oriented
version of RPC [5].

e DCOM (Distributed Component Object Model) is an
extension of Microsoft's COM (Component Object
Model) to allow integration of COM Components
located on different machines [6].

e CORBA (Common Object Request Broker
Architecture) is a standard of distributed computing
introduced by a worldwide OMG (Object
Management Group) consortium as an alternative to
DCOM, promoted by Microsoft. It is also based on
component model with well-defined interfaces,
through which component methods can be invoked.

In fact, CORBA is more then just a standard for
distributed computing, but discussing it is well
beyond the scope of this article. Further information
about CORBA can be found at OMG web site
(http://www.omg.org), or in [7].

The last three models are quite similar, and well suited for
development of modern object-oriented distributed
systems. The selection of a particular model for
implementation is based on many parameters. DCOM is
well suited for Windows-Only applications, while RMI is
perfect for Java applications because it is part of JDK
standard. In the author's view in most of the situations
using CORBA has many advantages:

e CORBA is a standard

e CORBA is multilingual: the implementations of
CORBA are available for many programming
languages including C++, Java, ObjectPascal, Perl
and many more

e CORBA is cross-platform and not restricted by any
particular operating system

Here we will discuss some of the principles used in
implementation of distributed knowledgebase-inference
architecture using CORBA.

Each component of the system (knowledge provider,
inference engine and so on) is implemented as a CORBA
object. For all types of components there are well-defined
interfaces, and all particular components implement these
interfaces. For example, there is a generic
InferenceEngine interface, which defines a set of
corresponding methods, and all implementations of
inference engines (forward reasoning, backward reasoning
of combined inference engines) implement this set of
functions. In turn all inference engines obtain rules from
knowledge providers through generic
KnowledgeProvider interface, while the actual
knowledge provider component can implement different
methods for storing rules.

For the actual consultation to take place, there should be
at least one inference engine and one rule provider
component combined together. To use these components,
one need to obtain so-called object references to them,
and instantiate the server objects which will actually
service requests. To do so, each component has the
corresponding factory object, which, when asked, will
produce the reference to the component itself and prepare
the corresponding object implementation on the server
side. For example, the interfaces for RuleProvider
and RuleProviderFactory objects in IDL
(Interface Definition Language similar to C++, which is
used to describe interfaces) might look like this:

interface RuleProvider

{

void StartTransaction (in string goal);
Rule GetNextRule();

void EndTransaction () ;

interface RuleProviderFactory

{

RuleProvider Create();
}

The server on which RuleProvider resides first
creates RuleProviderFactory object and makes it
somehow available to other components (CORBA
provides so-called Naming Service which facilitates tasks
like this). When any other component (like inference
engine) needs to use the RuleProvider, it calls the
Create () method of RuleProviderFactory,
which creates on the server side the RuleProvider
object, and returns its reference to the calling component,
which then can use it. If Create () is called one more
time, it creates another component, thus allowing multiple
components to use the same set of rules. When the
RuleProvider object is no longer needed, it is
destroyed by either explicitly calling corresponding
method, or automatically by garbage collector.

When the consultation takes place, some additional
information might be required from the user. The
inference engine talks to the user through
UserInterface component, which is created by the
program, which uses inference engine (this might be
interactive consultation shell, or a software system using
remote consultation). The basic function of
UserInterface isto get request values for attributes
which cannot be determined otherwise:

interface UserInterface
{
string GetValue (in string value,

in string sequence choices);
string Comment (in string s);
}
The current problem state is stored as a set of attribute-
value pairs, which are accessible through
ProblemState interface:

interface ProblemState
{
string GetValue(in string value);
int SetValue(in string attribute,
in string wvalue);

The interface of the inference engine is then looks like
this:

Workshop on Computer Science and Information Technologies CSIT 99, Moscow, Russia, 1999

interface InferenceEngine

{

void Init (UserInterface UI,

ProblemState PS, RuleProvider RP,
2)

void Execute(in string goal);
}

And of course there are factories for each type of
inference engine: Backward reasoning, forward reasoning,
etc.

The application that needs the remote consultation obtains
references to the factories, instantiates (via corresponding
Create () methods) InferenceEngine and
RuleProvider objects, and starts the inference. The
knowledgebase can contain references to another
inference engines: in this case the corresponding engines
are created and their Execute () method is called,
passing the original ProblemState and
UserInterface references to the new inference
engine. This process of starting the remote inference can
also be encapsulated in a library, which provides API for
programs that want to use remote consultation. This
library will take care of the details of creating all
necessary component instances. Moreover, one can
maintain the set of patterns typically used in a particular
components configuration, stating which components
should be used in standard situations, so that API routines
can just take the pattern name as a parameter.

5. Examples of Usage

Generally, a process of creating a knowledgebase is a very
complex one. A process of creating distributed
knowledgebase is even more difficult, because one needs
to oversee the way all parts would interact, and keep in
mind all rules in different rule providers. However, the
whole thing about distributed expert systems is to make a
complex system by combining more simple
knowledgebases developed independently. It might seem
as the presented approach does not provide any means to
do that.

We will not discuss here the whole process of developing
knowledgebases for distributed intelligent systems.
However, there are certain cases where the presented
architecture can be successfully used to unify separate
knowledgebases to provide more global consultation
facilities.

As an example let us consider a computer manufacturer
company with several departments in charge of different
computer parts, for which we want to create an expert
system to help user find the computer configuration (a set
of components needed to assemble a computer) and its
price depending on user's needs. In this case each
department could have a separate knowledgebase of

An Approach for Creating Distributed Intelligent Systems

products, and the central knowledgebase would consult
each one in turn to find the applicable products and their
prices. For example, if the user wants server solution, then
the central knowledgebase would look for devices for fast
hard disk transfer, and the corresponding department
knowledgebases would suggest fastest products available.
Using distributed approach has another advantage:
separate knowledgebases of each department could be
used not only as a part of consultation program, but also
in other applications. For example, if several firms use the
same approach, we can easily set up an application to
compare available hardware solutions.

Firm A

Central Knowledgebase M

CPU Price Analysis

Figure 4 An example of distributed system with
separate knowledge domains

In this example the whole distributed knowledgebase is
relatively easy to construct because separate
knowledgebases can be considered independently. The
reason for it is that all knowledgebases have different
knowledge domains, i.e. they reason about different
things and in different terms. Only the terms they use to
describe the initial problem state and the goals they can
reason for need to be known to others to use the
knowledgebase. In a sense the separate knowledgebases
are similar to components: they have well-defined
interface attributes and other attributes which they
encapsulate and use only for internal reasoning.

In case we want to compare inference results of different
knowledgebases (as mentioned in the example above), we
deal with the opposite situation, where knowledge
domains are the same. In order to avoid interference of
terms from different knowledgebases, a bit more
complicated approach should be used. The master
program should set up different problem states for
different knowledgebases, and then inference could be
performed parallely.

The examples considered are quite typical for real-life
situations, where information flow has hierarchical
structure, and therefore the problem can be separated into
distinct knowledge domains. Medical diagnosis program
in a hospital could be another example, where each doctor
would maintain his own knowledgebase for diagnosis,
and, combining them we would be able to obtain a

complete diagnosis based on patient's complaints. And we
can also perform consultation with different specialists'
knowledgebases and compare the results. Moreover, we
can set up more complex structure, where the diagnosis is
performed by several groups of individual
knowledgebases, each group providing complete
diagnosis, and the results of all groups are then compared
or combined. Of course, for complex diagnostic problems
probabilistic approach would be highly desirable, which
would require major improvements to the relatively
simple architecture described here.

6. Conclusion

As it can be seen in the examples above, there are many
different applications to the described approach. The main
advantage of the architecture is the additional flexibility
comparing to traditional agent-based approach. By
separating knowledgebase and inference it is possible to
combine knowledge on different levels of abstraction,
from simple rule merging to the complex combination of
rules and several types of inference. By using CORBA as
an infrastructure for distributed computing it is possible to
implement and use system components in several
programming languages and on different platforms, across
virtually any network. The architecture described can be
useful in implementing intelligence in distributed
information systems, which are widely used, for example,
in virtual corporations, thus bringing the advantages of
distributed computing to the new level.

References

1. Russel S., Norvig P. "Artificial Intelligence: A
Modern Approach". Prentice Hall, 1994.

2. JESS web page: http://herzberg.ca.sandia.gov/jess/

3. Zaitsev V.E., Lukashevich S.Y., Soshnikov D.V .,
Terlekchiev K.R., Raldugin V.N. "Remote API to the
BOW expert systems shell". Moscow Aviation
Technical University, 1998. (In Print)

4. Giarratano J., Riley G. "Expert Systems: principles
and programming". PWS Publishing Company,
Boston, 1994.

5. Weber J. "Special Edition: Using Java". QUE
Corporation, 1996.

6. Rogerson D. "Inside COM". Microsoft Press, 1997

7. Brjukhov D.O., Zadorozhniy V.I., Kalinichenko L.A.,
Kuroshev M.Y., Shumilov S.S. "Interoperable
information systems: architecrure and technology".
DBMS, 1995; No. 4. (In Russian)

Workshop on Computer Science and Information Technologies CSIT 99, Moscow, Russia, 1999

	An Approach for Creating Distributed Intelligent Systems
	
	
	
	Moscow Aviation Institute (Technical University)
	Moscow, Russia

	Abstract

	1. Introduction
	2. Some Approaches to Knowledge Sharing over Computer Networks
	3. Distributed Knowledgebase-Inference Architecture
	4. Some words about implementation
	5. Examples of Usage
	6. Conclusion
	References

