
An Architecture of Distributed Frame Hierarchy for Knowledge Sharing and
Reuse in Computer Networks

Dmitri Soshnikov
Department of Numerical Mathematics and Programming,

Moscow Aviation Technical University
dmitri@soshnikov.com

Abstract

An architecture for building distributed intelligent sys-
tems is considered, based on production-frame knowledge
representation with distributed frame hierarchy, in which
knowledge fragments located on different network nodes
can be used cooperatively in the process of distributed or
local inference. Frame knowledge representation can also
serve as a common denominator when integrating knowl-
edgebase with imperative components or relational data,
because objects and component interfaces as well as rela-
tional tables can be transparently represented by frames or
frame classes.

1. Introduction

Distributed intelligent systems can be used in many ap-
plication areas. In many cases those areas can be clas-
sified as distributed knowledge sharing and reuse, when
distributed knowledge is applied in some manner to the
solution of a problem. Such tasks occur when creating
knowledge repositories for distributed knowledge-intensive
virtual corporations, collections of knowledgebases main-
tained by different specialists, when building large-scale ex-
pert systems, etc.

When using traditional multiagent approach [1] (see Fig.
1, left hand side) to distributed artificial intelligence, which
is very broad and in many cases does not provide existing
solution, a developer is faced with creating an application-
specific architecture, models of agent communication and
software tools for actual implementation. Moreover, com-
plex asynchronous communication in agent society in some
cases turns out to be too general, which complicates im-
plementation. While in deliberative agent systems internal
knowledge representation of an agent is separated from the
external one that is used for communication and should be
the same for the agent society, in some cases it makes sense

Figure 1. Agent architecture and distributed
frame hierarchy

to base knowledge sharing principles on unified knowledge
representation and some remote communication mecha-
nisms that evolve from classical notion of remote procedure
call.

An approach presented in this paper is based on using
production-frame knowledge representation with frame hi-
erarchy distributed over computer network. Such system
can be considered as one frame hierarchy that is distributed
according to some remote communication protocol (see Fig.
1, right hand side), or as a collection of interoperating sub-
hierarchies — in this case it can be classified as static de-
liberative collaborative multiagent architecture [1] 1. Such
system can also use mobile interoperability based on inclu-
sion, as opposed to static remote-call interoperability based
on invocation.

While for multiagent systems the structure of the prob-
lem domain is typically formulated using ontologies and
then translated into internal representation, presented ap-

1Despite the fact that formally such architecture can be classified as
multiagent, it can also be opposed to multiagent architecture due to the
lower level of autonomy of individual subhierarchies.

1

proach is autoontological, i.e. system components them-
selves define hierarchy of problem domain concepts. Hi-
erarchical combination of frame subhierarchies is in fact a
natural implementation of taxonomic ontologies, that can
also be naturally extended by production rules to define dy-
namics of the problem domain.

Hiearchical frame knowledge representation allows mul-
tiple knowledge reuse due to inheritance, in a way sim-
ilar to object-oriented paradigm. Inheriting from remote
hierarchies allows extending remote knowledgebases with
more specific knowledge. Effective clasterisation of knowl-
edge around frame slots minimizes problems of cross-
knowledgebase consistency.

2. Distributed Frame Hierarchy Architecture

2.1. Production-Frame Knowledge Representation

Distributed frame hierarchy architecture is based on
production-frame knowledge representation that exploits
taxonomic hierarchy with inheritance relation and active
slots with query procedures and daemons, around which
production rules are clustered. Such an approach allows
combining in one model static knowledge about the prob-
lem in the form of slot values, structural knowledge of the
problem domain in the form of frame hierarchy, and dy-
namic knowledge in the form of attached procedures that
drive logical inference.

Thus, frame system state can be represented as � �
�� � �, where � — a set of identifiers, � — set of slots of
the form ��� �� ����� ����� ����������� ��, that include
current slot value � � �, default slot value � � �, set
of query procedures ���� and set of daemons ���� with
corresponding rule selection strategies in the form of com-
plete order relations �� and ��, set of constraints ����,
etc. Query procedures �� are in fact expressions from a set
� , constructed according to some defined syntax, and dae-
mons are represented by functions that change system state
�� � � � � (where � 	 � denotes the set of frame
model state functions) 2. A set of slot values � can be of
arbitrary structure (it can be, for example, as set of types
with dynamic or strict typisation) — for describing infer-
ence semantics it would be convenient to consider � being
a complete lattice.

Inheritance relation “�” is induced by a slot with reserved
name parent: 	 �

 �	 ��������� �
, which allows
formalising dynamic inheritance, in which frame parent
can be infered in the process of logical inference. Typical
for frame systems operation of pattern frame specification

2To describe forward inference that allows one-dimensional inheritance
parametrisation we need to define execution context of a daemon in the
form of base frame reference — in this case daemon functions would be
defined as�� � � � � � � .

can be implemented by including dynamic inheritance rule
	 ��������� match�	�
�. Multiple inheritance can also
be considered, in which case parent slot is assumed to be
of list type, and 	 �

 �	 ��������� 	
.

Inference semantics is defined in terms of semantic func-
tion � � � � �� �� � ��� , that is recurrently defined
to describe backwards inference, and a function of directed
forward inference ������ � � � � . On a set � a partial
order relation� is naturally induced by corresponding rela-
tion on�, with respect to which� forms a complete lattice.
Since we only consider monotonous inference (which leads
to the semantic functions being monotonous with respect to
frame states), there exists natural fixpoint semantics based
in consecutive application of � � and �. Process of com-
bined inference can also be illustrated as a search process in
finite state bigraph, defined on a set of states factored by the
relation of state equivalence with respect to all rule premises
in the knowledgebase. This set can be proved to be finite,
which leads to the finite set of steps in any logical inference
process.

Semantics of knowledge representation language is de-
fined by function � � �� � � � � , that transforms
language statements to set transformations, which being ap-
plied to empty state �� leads to the initial state �� � � ,
on which � � evaluation function is applied to start the in-
ference.

2.2. Frame model integration with relational
databases

Integration of relational databases into the frame model
is based on implicit definition of frame set ���� by
a relational table � , where each table row � �
���

���
� � �

���
� � � �

���
	 �� defines a frame named �

���
� (we can

without loss of generality consider first key column or
� to be a naming attribute) and slots ��� � �	 (where
���� � �	� — metadata of �), with values ��� � �	 ac-

cordingly (i.e.. ������ ����� � �
���
�).

We can also consider an approach where one frame cor-
responds to a family of table rows accoding to some crite-
ria (for example, an arbitrary SQL subexpression — in this
case semantics is defined in terms of oracle function that
incapsulates the semantics of SQL statements).

Suggested approach for integration of relational
databases and reasoning is in a way a compromise be-
tween classical models of active databases [3], where
relational model is extended by forward inference triggers,
and dedutive databases, that are rather first-order logic
representation of relational structures. Presented approach
allows using existing RDBMS software for reasoning over
data contained there by inheriting implicit database frames
from parent frames that encapsulate dynamic knowledge
used in inference.

2

2.3. Integration with imperative program code

Embedding imperative algorithmic components into
frame model is based on similarities between frame knowl-
edge representation and object-oriented and component ap-
proach, which allows representing objects and components
as frames according to some naming conventions. Seman-
tics of such frames is represented by some external com-
putable oracle function � � �	 ����� � �����.

From implementation point of view it is convenient to
attach procedures written in host programming language to
frame slots. Describing semantics of such procedures is
complicated, because of side-effects that can break mono-
tonicity of inference, but under some restrictions they can
also be describes as oracle-functions of certain types.

2.4. Distributed frame system

We would call distributed frame system a col-
lection of state functions of individual subhierarchies
�� � ����� ��	�� ��, where one subhierarchy is
designated as current, which we would also denote by
���� ���� ��	�. Expression syntax � would be ex-
tended by mobile � and static � remote references. We
would also without loss of generality suppose that frames in
subhierarchies are uniquely named. If it is not the case, we
can switch to complete frame naming, where frame name is
prepended by subhierarchy index.

We would define combination operator for state func-
tions as follows:

����� � ��� �

��
�
����� ��� if ��� �� � ��

����� ��� if ��� �� � ��

�� otherwise

This operator is symmetric and associative, which allows to
extend it to arbitrary number of subhierarchies. We would
call� � � �� � �

	
����� a state function of distributed

frame system. Such a function would be a state function of
some local frame hierarchy3, which we would call equiva-
lent induced local system for the original distributed sys-
tem.

For combining hierarchies we can also define operations
of hierachy inheritance as follows:

���
�
�� � �������������������� ���� 	�

�� �
�
�� � �������������������� ���� 	�

2.5. Distributed inference semantics

Logical inference in the distributed system can be de-
fined in terms of equivalent local system, or by introducing

3Omitting � and � operations that do not correspond to local syntax.

a semantic function for distributed inference ��		 � � � � �
�� � �� �� , that operate over sets of state functions.

For computing static and mobile references this function
would define interoperability of individual subhierarchies:

�������� ��		����

����

����� ���
�

����		����

������ �

����� ���

�������� ��		
�

����

����

����� ���
�

����		
����� �

����

����

��� �

����� ���

while for expressions that do not contain remote references
it would be defined by local semantics:

���		����

����

���������

��
�

��

����
� ��������

�

It can be demonstrated that for systems that use only mo-
bile or only static interoperability distributed inference se-
mantics is equivalent to that of local for equivalent induced
system. For combined interoperability in the general case
it is not true, however, for some classes (for example, for
purely polymorphic subhierarchies, where all rules corre-
spond only to one frame, without direct references to slots
of other frames, and all slot references are made through
current frame reference ����) equivalence still holds.

3. Implementation Details

Distributed frame hierarchy architecture is implemented
in JULIA toolkit (Java Universal Library for Intelligent Ap-
plications), that has been developed by the author. The
toolkit is implemented in Java (more than 13000 lines of
code) and is registered in the Russian Patent agency (certifi-
cate No. 2002610609 from 25.04.2002).

3.1. Toolkit Architecture

For defining knowledgebases specific knowledge repre-
sentation language had been developed, called JFMDL (Ju-
lia Frame Model Definition Language). Knowledgebase
formulated using that language is then translated into a col-
lection of Java objects representing frame hierarchy and at-
tached rules. Backward-chaining production rules and user
queries are translated into query procedures, and forward
chaining rules — into daemons, that form a sort of Rete
network. Toolkit uses modified version of Rete algorithm,
where slot values themselves serve as �-memory, and �-
memory is replaced by using special expression trees with
intermediate result caching.

An internal representation obtained after translation (so-
called frame world) can be directly used for logical infer-
ence, or can be serialized into external file or stored in ob-
ject database for further use in the logical inference. Load-
ing such a model from file or database can be performed
using few JULIA API calls.

3

Figure 2. JULIA Toolkit Architecture

Apart from relational database and imperative object in-
terfaces described above, the toolkit allows base program-
ming language implementation of arbitrary rule selection
strategies for forward and backward inference, arbitrary
daemons and query actions, user functions that can be used
in expressions and forward-chaining actions, etc. Moreover,
due to the open nature of JULIA API, it can be extended in
any way to suite desired functionality (for example, arbi-
trary data type or fuzzy inference can be implemented).

3.2. Implementation of remote inference

A set of all frames located on one network node (more
precisely, in one namespace) form a frame world. When
computing static remote reference a remote call is made us-
ing some remote interoperability protocol (CORBA, RMI).
For each remote frame a local object called proxy frame
is created, that forwards all slot requests to the remote net-
work node. Such proxy frame can also cache slot values,
thus minimizing network traffic when slot value is queried
more then once.

When frame 	 statically inherits frame
 on some
other node, the inference process can synchronously move
from one node to another. In the process of inference 	 can
query the slot value for some slot of remote parent frame

, giving execution control to remote inference engine and
passing remote self-reference as a base frame. 	 in the re-
mote hierarchy is, in turn, a remote frame, and assigning
values to its slots would be made via remote callback. Thus,
during inference dynamic production rules associated with

 will be used, but only static knowledge in the form of slot
values would be exchanged over the network.

Distributing forward inference is more complex task, be-
cause all daemons have to be linked into Rete-like network
prior to starting inference. If forward inference rules are
limited by a frame world boundaries, forward inference is
similar to backward: when a slot value is assigned daemons
for all parent frames up the hierarchy are executed, caus-
ing remote inference when needed. However, when there
are rules that use slots from different frame worlds in rule
premises, all such worlds have to register corresponding
daemons upon initial connection, and see if some rules can
be executed. Modified algorithm used in the toolkit lim-
its the used of cross-frame forward inference rules, thus
providing higher efficiency and remote inheritance trans-
parency.

Described functionality of remote inference requires ac-
tive two-way communication between network nodes using
some remote call protocol like CORBA or RMI. In some
cases it is desirable to create passive repositories of struc-
tured knowledge that can be loaded on demand using HTTP
or FTP standard protocols. In such cases mobile inheri-
tance is useful, in which dynamic knowledge in the internal
representation is transferred over the network and then used
by the local inference engine. It can be implemented by
loading the whole remote hierarchy (according to the se-
mantics described above), parent frame, or only required
rules. Apart from mobile inheritance, it is possible to use
references to remote knowledge repositories or rule collec-
tion. In the latter case the internal representation of a knowl-
edgebase would consist of a central hierarchy skeleton and a
set of files, one for each rule, that would be loaded through
the network on demand. Such approach can be used for
minimizing network traffic in client-server remote consul-
tations.

When combining knowledge from several remote
sources multiple inheritance can be used — in which case
remote calls to several remote hierarchies would be made
consecutively (according to some programmatically defined
criteria) until the solution is obtained. In some cases in-
stead of multiple inheritance pseudo-multiple, or consec-
utive inheritance can be used, where frame has only one
parent at any given moment, that is changed according to
some forward-chaining rules, meta-rules or external algo-
rithm. Such an approach is complimentary to multiple in-
heritance and can be used together with it, however, using
pseudo-multiple inheritance together with forward chaining
rules should be avoided, because of less transparent seman-
tics that does not directly correspond to the multiple inheri-
tance.

4

3.3. Toolkit Interfaces

JULIA toolkit provides the developer of an intelligent
system with JULIA API, which can be used for performing
logical inference from any Java-based applications. Avail-
ability or CORBA interfaces provides means for interfacing
corporate business logic and software systems developed in
any CORBA-aware programming language. In both cases
the interface is bidirectional, i.e. not only the toolkit can
be invoked from information systems, but also imperative
components and databases can be used as a part of frame
hierarchy, providing seamless means to reason about corpo-
rate data.

The toolkit also includes utilities for using it as an ex-
pert system shell for creating distributed dialog expert sys-
tems in the form of Java applets, servlets or applications.
Small run-time library footprint (less then 100 Kb) allows
using distributed reasoning functionality in mobile devices
like PDAs and cell phones that conform to MIDP or CDC
profiles. To fully exploit wireless functionality for building
distributed knowledge spaces with mobile devices as ter-
minals some further development of the toolkit is required
to use different XML-based distribution protocols (SOAP),
but conceptually proposed model scales very well into the
mobile environment. Moreover, we believe that eventually
this architecture can be integrated into other evolving stan-
dards and protocols within modern computer networks, in-
cluding Semantic Web initiative of the W3C.

4. Conclusion

Presented architecture of distributed frame hierarchy
can be effectively used in solving problems of distributed
knowledge sharing and reuse. JULIA toolkit provides a
cross-platform implementation of such an architecture, and
has been used in a number or real-life projects. For exam-
ple, it has been used in the development of intelligent infor-
mation system for diagnosing and planning treatment tac-
tics for patients with benign prostatic hyperplausea (BPH),
which is now used in the urology department of Botkin
state hospital in Moscow [5]. Based on the toolkit, some
prototype systems have been created, including ontologi-
cal search system for annotated hypermedia collections [6],
systems of distance education in the field of Logic Program-
ming, expert system for web resource promotion campaign
planning, and some more.

Architecture of distributed frame hierarchy is very scal-
able, and allows constructing traditional expert systems
with remote consultation facilities, taxonomic knowledge
repositories that can be later extended with more specific
knowledge and used collectively in solving specific do-
main problems, and in the nearest future to create wire-
less distributed knowledge spaces with mobile and hand-

held devices used as user terminals, and central servers
holding most accurate ontological problem domain knowl-
edge. Since interaction semantics for nodes in distributed
frame hierarchy is well-defined, it provides natural means
of using knowledge repositories in e-commerce B2B and
B2C systems, where certain price can be charged per con-
sultation, per number of rules used, or on subscription basis.
With clear auto-ontological production-frame knowledge
representation and relatively straightforward cross-platform
implementation, ability to interface legacy code, relational
and object-oriented databases, as well as corporate business
logic, we believe that distributed frame hierarchy architec-
ture and JULIA toolkit can be effectively used in problems
of knowledge sharing and reuse in evolving intelligent com-
puter networks.

References

[1] Nwana H.S. Software Agents: An Overview, Knowl-
edge Engineering Review, Vol. 11, No.3, 1996. pp. 1–
40.

[2] Soshnikov D. Software Toolkit for Buiding Embedded
and Distributed Knowledge-Based Systems. In Pro-
ceedings of the 2nd International Workshop on Com-
puter Science and Information Technologies, Vol.1,
USATU Publishing, Ufa, 2000. pp. 103–111.

[3] Hanson N.H.,Widom J. An Overview of Production
Rules in Database Systems. In the Knowledge Engi-
neering Review, Vol.8, No.2, 1993. pp.121–143.

[4] Ramakrishnan K., Ullman, J. A Survey of Research on
Deductive Database Systems, Journal of Logic Pro-
gramming, 23(2), 1995. – pp. 125–149.

[5] Lukianov I.V., Soshikov D.V. et al. Expert analysis
using Intelligent Information System for Diagnosing
and Developing Treatment Tactics for Patients with In-
fravesical Obstruction. Moscow Medical Journal, No.
5–6. pp. 29-31.

[6] Sizikov E.V., Soshnikov D.V. Jewel: Ontology-
based Search System for Intelligent Search in Inter-
net and Intranet Networks. Moscow, Electronic Jour-
nal “Trudy MAI”, No.7, 2002. (In Russian)

[7] Soshnikov D. Logical Inference based on Remote In-
vocation and Inclusion in the Systems with Distributed
Frame Hierarchy. Moscow, Vuzovskaya Kniga, 2002.
(In Russian)

5

